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Abstract

A Boolean network is a system of n interacting Boolean variables, which evolve, in a discrete time,
according to a regulation rule and to a predefined updating scheme. They have applications in
many areas, including circuit theory, computer science, social networks and biological systems.
The structure of such a network is often represented by a digraph, called interaction digraph,
where vertices are network components, and where there is an arc from one component to another
when the evolution of the latter depends on the evolution of the former.

The relationship between the structure of a regulatory network and its dynamical behavior is
crucial to understand for instance how and why biological networks have evolved. Further, this
relationship can be used to construct networks with desirable dynamical properties.

In the original scheme of a Boolean network all the nodes are synchronously updated at each
time step (this scheme is also called parallel schedule). A more general scheme, introduced in
[67], is to consider that the set of network nodes is partitioned into blocks and that the nodes in
a block are updated simultaneously. Differences in the dynamical behaviors of Boolean networks
with different update schedules has been studied mainly from an experimental and statistical point
of view.

In this tesis, the variations of the interaction digraph of a Boolean network with respect to
changes in the update schedule and its relation with some dynamical properties of the network are
studied.

In order to achieve this goal, three main topics are discussed.
First, the variations in the parallel digraph of some structural characteristics (number of

strongly connect components, transversal number, packing number) with respect to changes in
the update schedule are analyzed.

Second, an algorithm is constructed to find the fixed points of a Boolean network taking
advantage of knowledge about the upper bound of the fixed points of a network, in this case we
use the positive transversal number.

Finally, a new, so far unexplored problem is defined, which states that given a Boolean network
f , find a Boolean network h and an update schedule s that are dynamically equivalent to f . In
this sense, several variations of the original problem are presented, many of which can be solved
in polynomial time.
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Chapter 1

Introduction

1.1 English version

A Boolean network is a system of n interacting Boolean variables, which evolve, in a discrete
time, according to an evolution rule and to a predefined updating schedule. The structure of such
network is often represented by a digraph, called interaction or regulation graph, where the vertices
are network components, and there is an arc from one component to another when the evolution
of the latter depends on the evolution of the former.

Boolean networks have many applications, including circuit theory, computer science and social
systems. In particular, from the seminal works of Kauffman [45, 46] and Thomas [78, 79], they are
extensively used as models of gene networks. Among the many dynamical properties that can be
studied, the attractors of the network, such that limit cycles and fixed points (steady states) are
of special interest because they are associated to distinct types of cells defined by patterns of gene
activity. For example, the limit cycles are often associated with mitotic cycles in cells [14, 42, 45].

In the original scheme of a Boolean network all the nodes are updated at each time step, in
parallel (this scheme is also called synchronous updating). A more general scheme, introduced
in [67] and named block-sequential update schedule, is to consider that the set of network nodes
is partitioned into blocks and that the nodes in a block are updated simultaneously, the blocks
being considered in a given sequence. This generalizes the previous case because the parallel case
corresponds to a single block. It also generalizes the sequential update schedules, where every
node is updated in a defined sequence at every time step. Several theoretical studies about the
dynamical behavior of Boolean networks with block-sequential update schedules have been made,
especially in some particular families of networks, for example: neural networks [35, 38, 57], cellular
automata [31, 32, 33] and sequential dynamical systems [18, 19, 56, 58, 62].

Differences in the dynamical behaviors of Boolean networks with different update schedules has
been mainly studied from an experimental and statistical point of view [22, 26, 29]. Some recent
theoretical studies in this regard are exhibited in [5, 13, 20, 31, 34, 35, 57].

The relationship of regulatory network structural properties to dynamical properties is crucial
to understand for instance how and why biological networks have evolved. Further, this relationship
can be used to construct networks with desirable dynamical properties. It is well known that the
architecture of the interaction digraph influences the dynamical behavior of the network. For
example, a Boolean network with an acyclic interaction digraph has only one fixed point [67], and
more generally, the number of fixed points in a Boolean network is bounded by 2τ , where τ is
the minimum cardinal of a feedback vertex set of its interaction digraph [7]. More recently, in
[16] there are new upper and lower bounds for the number of fixed points in monotone Boolean
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networks based in the packing number of the interaction digraph.
On the other hand, there are studies where it can be found a relationship between architecture

and dynamical properties for some particular kind of Boolean networks. In this line we can mention
that in a disjunctive Boolean network, the existence and the length of the limit cycles is controlled
by the index of cyclicity of its interaction digraph, that is the greatest common divisor of the
length of the cycles of the digraph. In particular, in [21, 24, 43] it was proved that in conjunctive
Boolean networks, if the index of cyclicity is one then the dynamical behavior has only the two
trivial fixed points and no limit cycles, they also proved that if the index of cyclicity is greater
than one, the length of every limit cycle is a divisor of this index.

1.1.1 Problematic

The general objective of this thesis is to study the variations of the interaction digraph of a
Boolean network with respect to changes in the update schedule and its relation with some dynamic
properties of the network. In this way, we hope to better understand the possible dynamic behaviors
of a Boolean network f with different update schedules. For this purpose, we focus on studying
three main aspects.

Transversal number and packing number

As seen throughout the literature, the dynamics of each strongly connected component plays an
important role when studying the attractors of the dynamics (fixed points and limit cycles) [7, 43].
In addition, there are parameters that present us with interesting information when analyzing the
interaction graph. For example, the transversal number of a digraph G is related to the maximum
number of fixed points that a Boolean network f whose interaction graph is G can have [7, 66].
Besides, the packing number is related to the maximum number of fixed points when the associated
network is monotonic [16]. Therefore, as the parallel digraph of a labeled digraph can be considered
as the interaction graph of a new Boolean network, we are interested in studying how strongly
connected components work when obtaining the parallel digraph.

Algorithm to find the fixed points in Boolean networks

In the modeling of biological systems by Boolean networks, a key problem is finding the set of fixed
points of a given network. Some algorithms are based on transforming the fixed point problem, such
as [80, 82, 84], which uses the reduction method, or [41, 86], which represents Boolean networks as
polynomial functions, or [70, 3, 27, 28, 53, 76, 77], which uses methods based on SAT solvers, or
[1], which uses methods based on integer programming. Other types of algorithms consider certain
structural properties of the regulatory graph such as those proposed by [2, 85], which consider
a feedback vertex set of the graph. However, these methods do not take into account the type
of interaction (activation and inhibition) between its components. For this reason, this thesis
addresses a new strategy by combining upper bound results for fixed points in Boolean graphs
[7, 66] with results seen in [67], such as that fixed points are invariant to the update schedule
applied to a network and that networks without cycles have a single fixed point.

Dynamic equivalence between Boolean networks

Parallel digraphs, which are preliminary presented by F. Robert [67, 68], calling them Gauss-Seidel
operator, are a widely used tool over the years. Thanks to [36, 12], equivalence classes have been
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defined between different update schedules based on their update digraph, so that elements in the
same class have the same dynamic behavior.

In this sense, in [21, 10, 8, 34, 37] several investigations have been carried out on the properties
of these parallel digraphs with respect to the networks that generate them.

However, to our knowledge, the following questions have been little explored: What other
networks have the same dynamics as that of a given network? What dynamics are only yielded by
a parallel schedule?

1.1.2 Organization of the document

This thesis is organized as follows:
In first place, in Chapter 2 the definitions and notations that are used throughout this thesis

are presented. If any particular notation is needed in any chapter, it is presented at the beginning
of the chapter.

Then, in Chapter 3 we focus on some preliminary results on the structure of parallel digraphs
that are helpful for the rest of this thesis. First, we can conclude that the number of strongly
connected components of a digraph G is conserved since for each of these components, an associated
component is formed in the parallel digraph that has the same or fewer vertices than the original
component but in no case disappear. Secondly, the transversal number (τ) of the interaction
graph is analyzed, because it is known that it is related to the upper bound for the number of
fixed points. Therefore, we study how τ change when obtaining the parallel digraph. The result is
that, when obtaining the parallel digraph, the τ of the original digraph is maintained or increased.
Furthermore, to prevent τ from increasing uncontrollably when calculating the parallel digraph, an
update schedule has been defined that maintains the transversal number in the parallel digraph.
Finally, the study focuses on the packing number (ν), a value that gives us a bound for the fixed
points in monotonous networks. As in the case of the transversal number, the packing number
is also maintained or increased. If the ν of a graph is equal to its τ , using the previous labeling
function we can control the ν. And even more, for the case of the complete graph Kn whose ν is
n
2
, a different labeling function is presented that maintains that ν.

Subsequently, in Chapter 4, we propose a new algorithm for finding the set of fixed points of
a Boolean network, based on a positive feedback vertex set P of its regulatory graph and which
works, by applying a sequential update schedule, in time O(2|P | · n2+k), where n is the number of
components and the regulatory functions of the network can be evaluated in time O(nk), k ≥ 0.
The theoretical foundation of this algorithm is due a nice characterization, that we give, of the
dynamical behavior of the Boolean networks without positive cycles and with a fixed point. In
addition, a polynomial algorithm is presented to find a PFVS (not necessarily minimal) and a
minimal FVS containing it. The results of this chapter have been published in [9].

In Chapter 5 we define the problem of finding a Boolean network that is dynamically equivalent
to another network, i.e., given a Boolean network f find another Boolean network h and an update
schedule s (not equivalent to the parallel schedule), such that hs = f . For the general case, we
have two important results. First, we prove that if there exists a Boolean network h and an update
schedule s (of block-sequential type with k blocks), one can always construct a solution with an
update schedule s′ with two blocks and a Boolean network h′ resulting from applying modifications
to the network h. Also, it was successfully shown that the problem itself is NP-Hard. Subsequently,
in order to find a way to a better solution, we restrict the problem to disjunctive Boolean networks,
and with this change we found that, if there is two or more vertices sharing the input neighborhood,
it is easy to find a solution to the problem. If this does not occur, however, a polynomial algorithm

3



is developed that manages to give a solution to the problem (when it has one) or indicate that
there is no solution when there is none. The results of this chapter have been submitted to a
journal for publication.

Following the idea of the previous chapter, in Chapter 6 we analyze particular versions of the
dynamic equivalence problem and how they can be solved. For example, if the update schedule is
fixed, the dynamic equivalence problem in disjunctive networks can be solved in polynomial time.
Moreover, all networks satisfying dynamic equivalence for a network f and an update schedule s
can be found with polynomial delay. Besides, if the Boolean network h is fixed, finding an update
schedule s such that hs is dynamically equivalent to f can be found in polynomial time. Moreover,
a particular case is generated when h = f and a new algorithm is generated which, in polynomial
time, is able to find a two-block update schedule s such that hs = f . The results of this chapter
will be submitted to a future publication.

Finally, in Chapter 7 we summarize the results of this research.

1.2 Versión en español

Una red Booleana es un sistema de n variables Booleanas que interactúan entre śı, que evolucio-
nan en un tiempo discreto, de acuerdo a una regla de regulación y un esquema de actualización
predefinido. La estructura de una red de este tipo suele representarse mediante un digrafo, de-
nominado grafo de interacción o de regulación, en el que los vértices son componentes de la red, y
existe un arco de un componente a otro cuando la evolución de este último depende de la evolución
del primero.

Las redes Booleanas tienen muchas aplicaciones, entre ellas la teoŕıa de circuitos, la informática
y los sistemas sociales. En particular, desde los trabajos seminales de Kauffman [45, 46] y Thomas
[78, 79], se utilizan ampliamente como modelos de redes genéticas. Entre las muchas propiedades
dinámicas que pueden estudiarse, los atractores de la red, como los ciclos ĺımite y los puntos fijos
(estados estacionarios) son de especial interés porque están asociados a distintos tipos de células
definidas por patrones de actividad génica. Por ejemplo, los ciclos ĺımite suelen estar asociados a
los ciclos mitóticos de las células [14, 42, 45].

En el esquema original de una red Booleana todos los nodos se actualizan en cada paso de
tiempo, en paralelo (este esquema también se denomina actualización sincrónica). Un esquema
más general, introducido en [67] y denominado esquema de actualización bloque-secuencial, con-
siste en considerar que el conjunto de nodos del grafo se particiona en bloques y que los nodos
de un bloque se actualizan simultáneamente, considerándose los bloques en una secuencia deter-
minada. Esto generaliza el caso anterior, ya que el caso paralelo corresponde a un único bloque.
También generaliza los esquemas de actualización secuencial, en los que cada nodo se actualiza
en una secuencia definida en cada paso temporal. Se han realizado varios estudios teóricos sobre
el comportamiento dinámico de las redes Booleanas con esquemas de actualización secuencial por
bloques, especialmente en algunas familias particulares de redes, por ejemplo: redes neuronales
[35, 38, 57], autómatas celulares [31, 32, 33] y sistemas dinámicos secuenciales [18, 19, 56, 58, 62].

Las diferencias en los comportamientos dinámicos de redes Booleanas con diferentes esquemas
de actualización se han estudiado principalmente desde un punto de vista experimental y estad́ıstico
[22, 26, 29]. Algunos estudios teóricos recientes a este respecto se exponen en [5, 13, 20, 31, 34,
35, 57].

La relación entre las propiedades estructurales de las redes reguladoras y sus propiedades
dinámicas es crucial para entender, por ejemplo, cómo y por qué han evolucionado las redes
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biológicas. Además, esta relación puede utilizarse para construir redes con propiedades dinámicas
deseables. Es bien sabido que la arquitectura del digrafo de interacción influye en el compor-
tamiento dinámico de la red. Por ejemplo, una red Booleana con un digrafo de interacción aćıclico
tiene sólo un punto fijo [67], y más en general, el número de puntos fijos en una red Booleana está
limitado por 2τ , donde τ es el cardinal mı́nimo de un conjunto recubridor de ciclos de su digrafo de
interacción [7]. Más recientemente, en [16] hay nuevos ĺımites superior e inferior para el número de
puntos fijos en redes Booleanas monótonas basadas en el número de empaquetamiento del digrafo
de interacción.

Por otro lado, existen estudios donde se puede encontrar una relación entre arquitectura y
propiedades dinámicas para algún tipo particular de redes Booleanas. En esta ĺınea podemos
mencionar que en un grafo Booleano disyuntivo, la existencia y la longitud de los ciclos ĺımite
está controlada por el ı́ndice de ciclicidad de su digrafo de interacción, que es el máximo común
divisor de la longitud de los ciclos del digrafo. En particular, en [21, 24, 43] se demostró que en las
redes Booleanas conjuntivos, si el ı́ndice de ciclicidad es uno entonces el comportamiento dinámico
tiene sólo los dos puntos fijos triviales y ningún ciclo ĺımite, también se probó que si el ı́ndice de
ciclicidad es mayor que uno, la longitud de cada ciclo ĺımite es un divisor de este ı́ndice.

1.2.1 Problemática

El objetivo general de esta tesis es estudiar las variaciones del grafo de interacción de una red
Booleana con respecto a cambios en el esquema de actualización y su relación con algunas propiedades
dinámicas de la red. De esta forma, esperamos comprender mejor los posibles comportamientos
dinámicos de una red Booleana f con diferentes esquemas de actualización. Para ello, nos cen-
tramos en el estudio de tres aspectos principales.

Número transversal y número de empaquetamiento

Como se ha visto a lo largo de la literatura, la dinámica de cada componente fuertemente conectada
juega un papel importante a la hora de estudiar los atractores de la dinámica (puntos fijos y ciclos
ĺımite) [7, 43]. Además, existen parámetros que nos aportan información interesante a la hora
de analizar el grafo de interacción. Por ejemplo, el número transversal de un digrafo G está
relacionado con el número máximo de puntos fijos que puede tener una red Booleana f cuyo grafo
de interacción sea G [7, 66]. Además, el número de empaquetamiento está relacionado con el
número máximo de puntos fijos cuando la red asociada es monótona [16]. Por tanto, como el
digrafo paralelo de un digrafo etiquetado puede considerarse el grafo de interacción de una nueva
red Booleana, nos interesa estudiar cómo funcionan las componentes fuertemente conectadas al
obtener el digrafo paralelo.

Algoritmo para encontrar los puntos fijos en redes Booleanas

En el modelado de sistemas biológicos mediante redes Booleanas, un problema clave es encontrar
el conjunto de puntos fijos de una red dada. Algunos algoritmos se basan en la transformación del
problema de los puntos fijos, como [80, 82, 84], que utiliza el método de reducción, o [41, 86], que
representa las redes Booleanas como funciones polinomiales, o [70, 3, 27, 28, 53, 76, 77], que utiliza
métodos basados en solucionadores de SAT, o [1], que utiliza métodos basados en programación
entera. Otros tipos de algoritmos consideran ciertas propiedades estructurales del grafo regulatorio,
como los propuestos por [2, 85], que consideran un conjunto recubridor de ciclos del grafo. Sin
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embargo, estos métodos no tienen en cuenta el tipo de interacción (activación e inhibición) entre
sus componentes. Por ello, esta tesis aborda una nueva estrategia combinando resultados de cotas
superiores de puntos fijos en redes Booleanas [7, 66] con resultados vistos en [67], tales como que
los puntos fijos son invariantes respecto al esquema de actualización aplicado y que una red sin
ciclos tiene un único punto fijo.

Equivalencia dinámica entre grafos Booleanos

Los digrafos paralelos, presentados de forma preliminar por F. Robert [67, 68], denominándolos
operador de Gauss-Seidel, son una herramienta ampliamente utilizada a lo largo de los años.
Gracias a [36, 12], se han definido clases de equivalencia entre distintos esquemas de actualización
en función de su digrafo de actualización, de forma que los elementos de una misma clase tienen
el mismo comportamiento dinámico.

En este sentido, en [21, 10, 8, 34, 37] se han realizado diversas investigaciones sobre las
propiedades de estos digrafos paralelos respecto a las redes que los generan.

Sin embargo, hasta donde sabemos, las siguientes preguntas han sido poco exploradas: ¿Qué
otras redes tienen la misma dinámica que la de una red dada? ¿Qué dinámicas sólo se obtienen
con un esquema paralelo?

1.2.2 Organización del documento

Esta tesis está organizada de la siguiente manera:
En primer lugar, en el Caṕıtulo 2 se presentan las definiciones y notaciones que se utilizan a lo

largo de esta tesis. Si alguna notación en particular es necesaria en algún caṕıtulo, se presenta al
principio del mismo.

Entonces, en el Caṕıtulo 3 nos centramos en algunos resultados preliminares sobre la estructura
de los digrafos paralelos que son útiles para el resto de esta tesis. En primer lugar, podemos concluir
que el número de componentes fuertemente conexas de un digrafo G se conserva ya que para cada
una de estas componentes se forma una componente asociada en el digrafo paralelo que tiene igual
o menos vértices que la componente original pero en ningún caso desaparece. En segundo lugar, se
analiza el número transversal (τ) del grafo de interacción, ya que se sabe que está relacionado con
la cota superior para el número de puntos fijos. Por tanto, se estudia cómo cambia τ al obtener
el digrafo paralelo. El resultado es que, al obtener el digrafo paralelo, el τ del digrafo original
se mantiene o aumenta. Además, para evitar que τ aumente descontroladamente al calcular el
digrafo paralelo, se ha definido un esquema de actualización que mantiene el número transversal
en el digrafo paralelo. Por último, el estudio se centra en el número de empaquetamiento (ν),
valor que nos da una cota para los puntos fijos en grafos monótonos. Como en el caso del número
transversal, el número de empaquetamiento también se mantiene o aumenta. Si el ν de un grafo
es igual a su τ , utilizando la función de etiquetado anterior podemos controlar el ν. Y aún más,
para el caso del grafo completo Kn cuyo ν es n

2
, se presenta una función de etiquetado diferente

que mantiene ese ν.
Posteriormente, en el Caṕıtulo 4, proponemos un nuevo algoritmo para encontrar el conjunto

de puntos fijos de una red Booleana, basado en un FVS positivo de su grafo regulatorio y que
funciona, aplicando un esquema de actualización secuencial, en tiempo O(2|P | · n2+k), donde n
es el número de componentes y las funciones regulatorias del grafo pueden evaluarse en tiempo
O(nk), k ≥ 0. El fundamento teórico de este algoritmo se debe a una buena caracterización, que
damos, del comportamiento dinámico de las redes Booleanas sin ciclos positivos y con un punto
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fijo. Además, se presenta un algoritmo polinomial para encontrar un PFVS (no necesariamente
minimal) y un FVS minimal que lo contenga. Los resultados de este caṕıtulo se han publicado en
[9].

En el Caṕıtulo 5 definimos el problema de encontrar una red Booleana que sea dinámicamente
equivalente a otro red, es decir, dado una red Booleana f encontrar otra red Booleana h y un
esquema de actualización s (no equivalente al esquema paralelo), tal que hs = f . Para el caso
general, tenemos dos resultados importantes. En primer lugar, demostramos que si existe una red
Booleana h y un esquema de actualización s (de tipo bloque-secuencial con k bloques), siempre
se puede construir una solución con un esquema de actualización s′ con dos bloques y una red
Booleana h′ resultante de aplicar modificaciones a la red h. Además, se demostró con éxito que el
problema en śı es NP-Hard. Posteriormente, para encontrar un camino hacia una mejor solución,
restringimos el problema a red Booleanas disyuntivas, y con este cambio encontramos que, si
hay dos o más vértices con la misma vecindad de de entrada, es fácil encontrar una solución al
problema. Si esto no ocurre, sin embargo, se desarrolla un algoritmo polinomial que consigue dar
una solución al problema (cuando la tiene) o indicar que no hay solución cuando no la hay. Los
resultados de este caṕıtulo se han enviado a una revista para su publicación.

Siguiendo la idea del caṕıtulo anterior, en el Caṕıtulo 6 analizamos versiones particulares del
problema de equivalencia dinámica y cómo pueden resolverse. Por ejemplo, si el esquema de
actualización es fijado, el problema de equivalencia dinámica en grafos disyuntivos puede resolverse
en tiempo polinomial. Además, todos las redes que satisfacen la equivalencia dinámica para un
red f y un esquema de actualización s pueden encontrarse con delay polinomial. Además, si la red
Booleana h es fijada, se puede encontrar en tiempo polinomial un esquema de actualización s tal
que hs sea dinámicamente equivalente a f . Además, se genera un caso particular cuando h = f
y se genera un nuevo algoritmo que, en tiempo polinomial, es capaz de encontrar un esquema de
actualización de dos bloques s tal que hs = f . Los resultados de este caṕıtulo se presentarán en
una futura publicación.

Finalmente, en el Caṕıtulo 7 se consolidan los resultados de esta investigación.

7



Chapter 2

Definitions and Notations

A Boolean network (BN) with n components is a discrete dynamical system usually defined by a
global transition function:

f : Bn → Bn, x 7→ f(x) = (f1(x), . . . , fn(x)),

where B = {0, 1} and each function fu : Bn → B associated to the component u is called local
activation function (also known as regulatory function).

Any vector x = (x1, . . . , xn) ∈ Bn is called a state of the network f with local state xu on each
component u.

In the sequel, we denote [n] = {1, . . . , n}, for any integer n.
An update schedule is defined by a function s : [n] → [n] such that s([n]) = [m] for some

m ≤ n, where s(u) indicates the updating order of the component u in a time step. A block of an
update schedule s is a set Bi = {u ∈ [n] : s(u) = i}, with i ∈ [m]. An update schedule s is also
denoted by s = B1, B2, . . . , Bm. If m = 1, the update schedule is called synchronous or parallel
(e.g., {1, 2, 3, 4, 5}). If m = n, the update schedule is called sequential (e.g., {1} {2} {3} {4} {5}).
Other kinds of update schedules can be named as block-sequential updates (e.g., {1, 2} {3} {4, 5}).
In the sequel, we denote sp to the parallel update schedule.

2.1 Interaction digraph

We define the interaction graph of a Boolean network f : Bn → Bn, denoted by G(f) = ([n], A(f)),
as:

[n] = {1, . . . , n} ,
A(f) = {(u, v) ∈ [n]× [n] : ∃x ∈ Bn, fv(x) 6= fv(x

¬u)}

where ∀i ∈ [n], x¬ui = xi ⇐⇒ u 6= i.
Also, for each u ∈ [n] we define the in-neighborhood and the out-neighborhood of u as:

N−f (u) = {v ∈ [n] : (v, u) ∈ A(f)}
N+
f (u) = {v ∈ [n] : (u, v) ∈ A(f)}

And the in-degree and the out-degree of u as:

d−(u) = |N−f (u)| d+(u) = |N+
f (u)|

If d−(u) = 0, we say that u is a source vertex. The degree of u is d(u) = d−(u) + d+(u).
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Definition 2.1. We say that a vertex u ∈ V is a pendant node if d+(u) = 0.

Example 2.1. An example of a Boolean network f and its interaction graph G(f) is shown in
Figure 2.1.

1

2

3 4

5

f1 = ¬x2 ∧ x5

f2 = (x1 ∧ x3) ∨ (x5 ∧ ¬x3)
f3 = (¬x1 ∨ ¬x5) ∧ x3 ∧ x4

f4 = (x4 ∧ x3) ∨ (x5 ∧ ¬x3)
f5 = x4

sign = -1

sign = +1

sign = 0

+ +

++

+

+

+
+

−

−

−0

0

Figure 2.1: Example of a Boolean network and its interaction graph.

If for some arc (u, v) ∈ A(f), there exists x ∈ Bn, such that xu = 0 and fv(x) < fv(x+ eu),
where eu ∈ Bn denotes the binary vector with all entries equal to 0, except for entry u, which equals
1; then, we say that fv is increasing monotone on input u and the sign of (u, v) is +1. Otherwise,
if for some arc (u, v) ∈ A(f), there exists x ∈ Bn, such that xu = 0 and fv(x) > fv(x+ eu) we say
that fv is decreasing monotone on input u and the sign of (u, v) is −1.

For easy notation, the vertex set of G(f) is referred to as V and its arc set as A. If G(f) does
not have multiple signs from one vertex to another, then we say that f is a regulatory Boolean
network (RBN).

A walk from a vertex v0 to a vertex vl in the interaction graph G(f) is a sequence of vertices
and arcs W = v0, a0, v1, . . . , al−1, vl of G(f) such that ∀i ∈ {0, . . . , l − 1}, ai = (vi, vi+1) ∈ A. A
path is a walk without repetition of vertices (except eventually the extreme ones). A circuit is a
walk without repetition of arcs and closed (i.e. its extreme vertices are equal). A cycle is a closed
path.

The sign of a walk (path, circuit or cycle) is the product of the signs of its arcs. We say that
a cycle is a positive cycle, if the sign of the cycle is +1, otherwise, we say that is a negative cycle.
For example, in Figure 2.1 the sign of the cycle {4, 5, 4} is +1 because +1 ·+1 = +1 and the sign
of the cycle {1, 2, 1} is −1 because +1 · −1 = −1.

In the sequel, we will refer to the signed cycles of a BN f as the cycles of G(f).
We refer [17] for other basic definitions in digraphs.

2.2 Labeled digraph

Definition 2.2. Let G = (V,A) be a digraph and s an update schedule. We define the label
function labs : A→ {	,⊕} in the following way:

∀(j, i) ∈ A labs(j, i) =

{
⊕ if s(j) ≥ s(i)

	 if s(j) < s(i)

An arc a ∈ A such that labs(a) = ⊕ is called an arc with positive labeling and an arc a ∈ A such
that labs(a) = 	 is called an arc with negative labeling. Labeling every arc a of A by labs(a), we
obtain a labeled digraph (G, labs) (Figure 2.2).
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⊕

⊕

⊕

Figure 2.2: A digraph G = (V,A) labeled by the function labs, where ∀i ∈ V = {1, . . . , 4}, s(i) = i.

Definition 2.3. A labeled digraph (G, lab) is said to be an update digraph (UD) if there exists an
update schedule s such that lab = labs, that is ∀a ∈ A(G), lab(a) = labs(a) (see the example in
Figure 2.3)

A cycle with full negative labeling is a cycle in which all its arcs are labeled negative (Fig-
ure 2.3(b)). Notice that an update digraph does not have full negative cycles.

(a)

1

2 3

	 	

⊕

(b)

1

2 3

	 	

	

Figure 2.3: (a) A labeled digraph (G, lab) which is an update digraph. (b) A labeled digraph (G, lab′)
which is not an update digraph.

Finally, we define the following equivalence relation between two update schedules s and s′:

s ∼G(f) s
′ ⇐⇒ G(f, s) = G(f, s′). (2.1)

We denote [s]G(f) the equivalence class of s induced by ∼G(f).

2.3 Parallel digraph

A useful tool to study some interesting properties for this thesis is the potential dependencies
digraph of the equivalent parallel network (in short, parallel digraph).

Definition 2.4. Let f : Bn → Bn be a Boolean network and s an update schedule, the parallel
digraph, denoted as GP (f, s) = ([n], A), where:

∀v ∈ B1,(u, v) ∈ A⇐⇒ (u, v) ∈ A(f) (2.2)

∀v /∈ B1,(u, v) ∈ A⇐⇒ (∃w ∈ N−f (v), s(w) < s(v) ∧ (u,w) ∈ A) ∨ (s(u) ≥ s(v) ∧ (u, v) ∈ A(f))

(2.3)

which is equivalent to:

(u, v) ∈ A⇐⇒
[
(∃w ∈ N−f (v), s(w) < s(v) ∧ (u,w) ∈ A) ∨ ((u, v) ∈ A(f) ∧ s(u) ≥ s(v))

]
(2.4)
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Figure 2.4: (a) A labeled digraph (G, lab) (b) The parallel digraph GP (G, lab).

Example 2.2. An example of parallel digraph is shown in Figure 2.4

Note that in Equations (2.3) and (2.4) the construction of the arc (u, v) depends on the arc
(u,w) which was previously constructed (since w is updated before v). Therefore, the set A is well
defined.

By calling it a digraph of potential dependencies we mean that transitively these variables may
depend on each other. For example, in Figure 5.1(a), f3 depends on x5, and also f5 depends on
x2, therefore, if x5 is updated before x3 (as in the case of update schedule s), it is likely that
f3 depends on x2. But this is not always the case, since by the nature of the different Boolean
functions, some may cancel with others, as is the case of f s3 in Figure 5.1(b) and Figure 5.1(c).
Therefore, it is easy to notice that G(f s) ⊆ GP (f, s).

In the case of disjunctive networks, from the research conducted in [34], there is a direct
relationship between the parallel digraph and the effective network when updated in parallel.

Remark 2.1. Given f, h : Bn → Bn two disjunctive Boolean networks and an update schedule s,
hs = f is equivalent to GP (h, s) = G(f).

Indeed, if we consider the transitivity of dependencies of the parallel digraph, it produces a
composition of functions when defining the effective dependencies of a variable. And considering
that the OR function is closed under compositions, no potential dependency is canceled. There-
fore, in the case of disjunctive networks, all potential dependencies are effective dependencies and
therefore hs = f is equivalent to GP (h, s) = G(f).
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Chapter 3

Preliminary results

It is widely recognized that several critical characteristics of the interaction digraph exhibit strong
correlations with the dynamic behavior manifested within the associated Boolean network. Among
these characteristics, the transversal number [7], positive transversal number [7], and packing num-
ber [16] of the interaction digraph have been identified as offering upper bounds for the cardinality
of fixed points inherent to the corresponding Boolean network. As fixed points of the Boolean net-
work remain unaltered regardless of the update schedule applied, an exploration into the behavior
of these three numerical attributes under non-parallel update schedules becomes an interesting
topic to study.

In this context, our study delves into the intricate dynamics that emerge when employing
update schedules beyond the parallel paradigm. Given the inherent complexity of determining the
precise dependencies of a Boolean network when subjected to alternative update schedules, we
navigate this challenging terrain by focusing our attention on the parallel digraph. This decision
is driven by the expedient fact that the parallel digraph can be deciphered in polynomial time,
offering a more tractable foundation from which to unravel the behavior of the aforementioned
numerical properties. By investigating how these pivotal metrics evolve within the realm of the
parallel digraph, we gain insights into the potential implications of diverging from the standard
parallel update scheme in Boolean networks. This endeavor not only expands our comprehension of
Boolean network dynamics but also contributes to the broader understanding of network theories
and their real-world applications.

3.1 Definition and notation

A vertex set F ⊆ V is a feedback vertex set (FVS) of G if G − F is acyclic. F is said to be a
minimal feedback vertex set of G if F is a FVS of G and there is no other FVS F ′ such that F ′ ( F .
F is said to be a minimum feedback vertex set of G if F is a FVS of G and there is no other FVS
set F ′ such that |F ′| < |F |.

We denote τ(G) = min {|F | : F is a FVS of G} the transversal number of G.
P ⊆ V is a positive feedback vertex set (PFVS) of the signed regulatory graph G if G − P is

a digraph without positive cycles. The minimum cardinality of a PFVS is denoted by τ+(G) and
called the positive transversal number of G.

NN ⊆ V is a non-negative feedback vertex set (NNFVS) of the signed regulatory graph G if
G−NN is a digraph with only negative cycles. The minimum cardinality of a NNFVS is denoted
by τ+0(G) and called the non-negative transversal number of G.
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When there is no confusion, for simplicity we denote τ(G) by τ , τ+(G) by τ+ and τ+0(G) by
τ+0.

Remark 3.1. Since a FVS is a particular PFVS, τ+ ≤ τ.

Two cycles are said to be vertex-disjoint if they have no common vertex. The maximum number
of vertex-disjoint cycles in a graph G is named packing number and is denoted by ν(G). It is known
that ν(G) ≤ τ(G).

Given a labeled digraph (G, lab), we define:

V⊕(G) = {u ∈ [n] : ∃v ∈ [n], (u, v) ∈ A(G) ∧ lab(u, v) = ⊕} ,
V	(G) = V (G) \ V⊕(G).

3.2 Some relations between interaction graph and parallel

digraph

The next lemma shows how the connections between vertices in the interaction digraph are related
to the connections in the parallel digraph. This lemma is fundamental for the results in this
chapter.

Lemma 3.1. Let (G, lab) be an update digraph. For all u, v ∈ V (G), there exists a walk from
u to v in G with a positive label in the first arc if and only if there exists a path from u to v in
GP (G, lab).

Proof. Given W = u0, u1, . . . , uk a walk from u0 to uk in G such that lab(u0, u1) = ⊕.
We prove by induction that for all l ∈ {1, . . . , k}, there exists Pl a path from u0 to ul in

GP (G, lab).
Basis. Since lab(u0, u1) = ⊕, (u0, u1) ∈ A(GP (G, lab)). Therefore, there exists P1 a path from

u0 to u1 in GP (G, lab).
Induction Hypothesis. for all l ∈ {1, . . . , j}, there exists Pl a path from u0 to ul in

GP (G, lab).
Case j + 1. There are two cases:

1. lab(uj, uj+1) = ⊕
Since, (uj, uj+1) ∈ A(GP (G, lab)) and there exists Pj a path from u0 to uj in GP (G, lab). (by
induction hypothesis). Then, there exists a walk from u0 to uj+1 in GP (G, lab), therefore,
there exists Pj+1 a path from u0 to uj+1 in GP (G, lab).

2. lab(uj, uj+1) = 	
Let j∗ = max {i ∈ {0, . . . , j − 1} : lab(ui, ui+1) = ⊕}. We observe that eventually j∗ = 0.

Since (uj∗ , uj+1) ∈ A(GP (G, lab)) and there exists Pj∗ a path from u0 to uj∗ in GP (G, lab) (by
induction hypothesis). Then, there exists a walk from u0 to uj+1 in GP (G, lab). Therefore,
there exists a path from u0 to uj+1 in GP (G, lab).

In this way for all l ∈ {1, . . . , k}, there exists Pl a path from u0 to ul in GP (G, lab).
Conversely, given P = u0, u1, . . . , uk a path in GP (G, lab). Then, by definition of GP (G, lab),

∀i ∈ {0, . . . , k − 1} , (ui, ui+1) ∈ A(P ), there exists a walk from ui to ui+1 such that the first arc
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has positive labeling. Finally, since for every i ∈ {0, . . . , k − 1}, there exists a walk from ui to ui+1

in G such that the first arc has positive labeling. Then, the concatenation of these walks form a
walk from u0 to uk whose first arc has positive labeling. Therefore, there exists a walk from u0 to
uk in G such that the first arc has positive labeling. 2

Example 3.1. Let (G, lab) be an update digraph as in Figure 2.4(a) and its parallel digraph in
Figure 2.4(b). Since there is a walk W from 2 to 2 in (G, lab) such that W starts with an arc
with positive labeling (2,3,4,5,2; 2,3,1,2 or 2,3,6,1,2), then there exists a path P from 2 to 2 in
GP (G, lab) (2,4,2; 2,1,2 or 2,6,1,2). Let (G, lab) be a labeled digraph as in Figure 3.1(a) and its
parallel digraph in Figure 3.1(b). Since there is a walk W from 2 to 1 in (G, lab) such that W
starts with an arc with positive labeling (2,3,4,5,6,1), then there exists a path P from 2 to 1 in
GP (G, lab) (2,4,5,1).

(a)

1

2

3

4

5

6

⊕

	

⊕ ⊕

		

⊕

(b)

1

2

3

4

5

6

Figure 3.1: (a) A labeled digraph (G, lab) (b) The parallel digraph GP (G, lab).

In the proposition below, we prove that the structure of non-trivial strongly connected compo-
nents of a digraph is preserved applying an update schedule.

Proposition 3.2. Let (G, lab) be an update digraph with G1, . . . , Gm its non-trivial strongly con-
nected components. Then, GP (G, lab) has G̃1, . . . , G̃m its non-trivial strongly connected components
such that:

∀i ∈ {1, . . . ,m} , V (G̃i) = V⊕(Gi)

Proof. Let Gi be any non-trivial strongly connected component of G.
Note that Gi has at least one arc with positive labeling, otherwise there would be cycles with

fully negative labeling, and that is not an update digraph.
Given u ∈ V⊕(Gi), for all v ∈ V⊕(Gi), there exists a walk W from u to v in Gi such that

the first arc of W has positive labeling. (Particularly, there exists a walk from u to u in Gi)
Then, by Lemma 3.1, there exists a path from u to v and from v to u in GP (G, lab). Therefore,
∃j ∈ {1, . . . ,m} , V⊕(Gi) ⊆ V (G̃j).

Conversely, let ũ, ṽ ∈ V (G̃j) be any two vertices. Since G̃j is a strongly connected component
of GP (G, lab), there exists a path from ũ to ṽ in G̃j and, by Lemma 3.1, there exists a walk from
ũ to ṽ in G such that the first arc has positive labeling.

Since there exists a walk from ũ to ṽ in G with the first arc with positive labeling and there
exists a walk from ṽ to ũ in G with the first arc with positive labeling, {ũ, ṽ} ⊆ V (Gi) for some
i ∈ {1, . . . ,m} and {ũ, ṽ} ∈ V⊕(Gi). Therefore, V (G̃j) ⊆ V⊕(Gi). 2
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Example 3.2. Let (G, lab) be a labeled digraph as in Figure 3.2(a) and its parallel digraph
in Figure 3.2(b). Then, (G, lab) has three non-trivial strongly connected components: G1 with
vertices 1 and 2, G2 with vertex 3 and G3 with vertices 5, 6 and 7. At the same time, GP (G, lab)
has three non-trivial strongly connected components: G̃1 with vertex 1, G̃2 with vertex 3 and G̃3

with vertex 5.

a1

2

3 4 5

6

7⊕ 	

	

⊕

	 ⊕

⊕

	

	

b

1

2

3 4 5

6

7

Figure 3.2: (a) A labeled digraph (G, lab) (b) The parallel digraph GP (G, lab).

The following proposition shows that the pendant nodes of the parallel digraph (Definition 2.1)
can be easily identified in the labeled digraph that generates the parallel digraph.

Proposition 3.3. Let (G, lab) be an update digraph and Gi a strongly connected component of G.
Given u ∈ V (Gi), if u ∈ V	(Gi, lab), then u is a pendant node of GP (Gi, lab).

Proof. We prove by contradiction. Let us suppose that d+
GP (Gi,lab)(u) 6= 0, i.e. ∃(u, v) ∈

A(GP (Gi, lab)) then, by definition of GP ((G, lab)), there exists w ∈ V (Gi), such that lab(u,w) =
⊕, which is a contradiction. 2

Combining the results of Proposition 3.2 and Proposition 3.3, the following corollaries are
obtained.

Corollary 3.4. Let (G, lab) be an update digraph. GP (G, lab) is a strongly connected digraph if
and only if G has a unique strongly connected component and V⊕(G, lab) = V (G).

In the following proposition, we present a relationship between the transversal number of G
and the size of the non-trivial connected source component of its parallel graph (independent of
the update schedule with which it is generated).

Proposition 3.5. Let (G, lab) be an update digraph strongly connected. Then, the size of the
non-trivial strongly connected component of GP (G, lab) is greater or equal than τ(G).

Proof. By contradiction, let us suppose that there exists a labeling function lab such that
GP (G, lab) has a strongly connected component of size lesser than τ(G).

Let S ⊆ V (G) be the vertex set in the strongly connected component of GP (G, lab), such that
|S| < τ(G).

Then, there exists a cycle C = v0, . . . , vl with v0 = vl in G, such that ∀i ∈ {0, . . . , l}, vi /∈ S.
Then, by Corollary 3.4, ∀i ∈ {0, . . . , l − 1}, lab(vi, vi+1) = 	, resulting in a cycle in G with all

its arcs negative, which is a contradiction. 2

Now, with these results, the following objective is proposed: to define an update schedule that
controls the growth of the transversal number of G when calculating its parallel digraph. For this
purpose, we define the following candidate update schedule.
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Definition 3.1. Let F ⊆ V (G) be a feedback vertex set of G. We define the labeling function
labF : A(G)→ {⊕,	} as:

∀(u, v) ∈ A(G), labF (u, v) =

{
⊕ if u ∈ F
	 otherwise.

First, we show that the labeled digraph is a valid update schedule.

Proposition 3.6. Let G be a strongly connected digraph and F ⊆ V (G) a feedback vertex set of
G, then (G, labF ) is an update digraph.

Proof. Let F be an FVS it is easy to notice that the set A⊕ defined as follows:

A⊕ = {(u, v) ∈ A(G) : u ∈ F}

is a feedback arc set. Therefore, G − A⊕ is an acyclic directed graph. The topological order of
this DAG, shows us different “layers” that we can consider as the blocks of our candidate update
schedules. If we finally place the set F as the last block, the resulting update schedule respects each
and every labeling of labF , so since there is an update schedule, (G, labF ) is an update digraph. 2

For example, if for the digraph presented in Figure 3.3(a), we choose the {1, 6} set as FVS, the
following sets of positive arcs (Figure 3.3(b)) and negative arcs (Figure 3.3(c)) are generated. If
we follow the topological order of the negative arcs, the update schedule s = {3, 4} {5} {2} {1, 6}
is generated, which respects both positive and negative labels, therefore the label generated by
labF is update.
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Figure 3.3: (a) {1, 6} is a FVS of G (b) A⊕ (c) G−A⊕ (d) Topological order of G−A⊕

Finally, it is shown that the size of the nontrivial strongly connected component resulting from
the parallel digraph is equal to τ(G) and no larger.
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Proposition 3.7. Let G be a strongly connected digraph. Then, there exists a labeling function lab
such that (G, lab) is an update digraph and GP (G, lab) has one and only one non-trivial strongly
connected component of size τ(G) and the vertices that are not in the strongly connected component
are “pendant nodes”.

Proof. Let F ⊆ V (G) be a feedback vertex set ofG such that |F | = τ(G). Then, by Corollary 3.4,
(G, labF ) has one strongly component of size τ(G).

By contradiction, let us suppose that exists a vertex u that is not in the strongly connected
component of G and is not a “pendant node”. Then, by definition of “pendant node”, there ex-
ists a vertex v such that (v, u) ∈ A(G) and v is not in the strongly connected component of G.
Therefore, the vertex v is not in the strongly connected component and d+

GP (G,lab)(v) > 0, which
contradicts Corollary 3.4. 2

In addition, we want to study the packing number of the parallel digraph. For this, it is
necessary to study how the parallel digraph cycles are formed.

Lemma 3.8. Let (G, lab) be an update digraph. For every cycle Ci ∈ G, there exists a cycle
C̃i ∈ GP (G, lab) such that V (C̃i) ⊆ V (Ci)

Proof. Given Ci : u0, u1, . . . , uk = u0 a cycle in G. For all u ∈ V⊕(Ci), by Lemma 3.1, there
exists a path from u to u in GP (G, lab). Then, V⊕(Ci) ⊆ V (C̃i).

Conversely, given C̃i : v0, v1, . . . , vk = v0 a cycle in GP (G, lab). For all v ∈ V (C̃i), by
Lemma 3.1, there exists a walk from v to v in G such that the first arc has a positive label-
ing. Then V (C̃i) ⊆ V⊕(Ci). 2

Lemma 3.8 shows that each cycle of G has a representative cycle in the parallel digraph, but
Remark 3.2 shows that this representative cycle is not exclusive to a single cycle of G, so the
number of cycles in the parallel digraph may decrease.

Remark 3.2. Figure 3.4 shows that given (G, lab), the number of cycles in G is not necessarily
equal to the number of cycles in GP (G, lab).

(a)
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5
6

⊕ 	

⊕
	

⊕
	 ⊕

	

⊕
	

(b)

1

2

3 4

5
6

Figure 3.4: (a) A labeled digraph (G, lab) with 5 cycles (b) The parallel digraph GP (G, lab) with 1
cycle.

With these results, as in the previous case, we can define a relationship between the packing
number of G and the packing number of any parallel digraph of G.

Proposition 3.9. Let (G, lab) be an update digraph strongly connected. Then, the packing number
of GP (G, lab) is greater or equal than the packing number of G.
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Proof. By contradiction, let us suppose that there exists a labeling function lab such that
ν(GP (G, lab)) is lesser than ν(G).

Then, there exists at least one cycle in G that does not have an associated cycle in GP (G, lab),
which contradicts Lemma 3.8. 2

Since labF was designed to preserve the transversal number of G, it is interesting to see if the
same is true for the packing number of G.

Remark 3.3. Figure 3.5 shows that given G and a labeling function labF , not necessarily ν(G) =
ν(GP (G, labF )).
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⊕

(b)

1

2

3 4

Figure 3.5: (a) A labeled digraph (G, labF ) with τ(G) = 3 and ν(G) = 2 (b) The parallel digraph
GP (G, labF ) with τ(GP (G, labF )) = 3 and ν(GP (G, labF )) = 3.

It is possible to prove that, if there exists a digraph G with ν(G) = τ(G) (a very particular case),
in that case, labF generates a parallel digraph such that the packing number of G is conserved.

Proposition 3.10. Let G be a strongly connected digraph such that ν(G) = τ(G). Then, there
exists a labeling function lab such that (G, lab) is an update digraph and ν(GP (G, lab)) = ν(G).

Proof. Let F ⊆ V (G) be a feedback vertex set of G such that |F | = τ(G). Let SC be the set of
disjoint cycles of G with |SC| = ν(G). As ν(G) = τ(G), then each cycle of SC has one and only
one vertex in F . Then, ∀u ∈ F , there is a walk from u to u with the first arc with positive labeling
in (G, labF ), therefore, there is a loop over u in GP (G, labF ). Each of these loops are disjoint sets,
so ν(GP (G, labF )) = ν(G). 2

In addition, for the particular case of the graph Kn (complete digraph of n vertices) we define
the following update schedule.

Definition 3.2. Let F ⊆ V (G) a feedback vertex set of G. We define a labeling function labF :
A(G)→ {⊕,	} as:

∀(u, v) ∈ A(G) labF (u, v) =

{
⊕ if v ∈ F
	 otherwise.

First, we show that labF (u, v) induces a valid update schedule.

Proposition 3.11. Let G be a strongly connected digraph and F ⊆ V (G) a feedback vertex set of
G, then (G, labF ) is an update digraph.
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Proof. Let F be an FVS it is easy to notice that the set A⊕ defined as follows:

A⊕ = {(u, v) ∈ A(G) : v ∈ F}

is a feedback arc set. Therefore, G − A⊕ is an acyclic directed graph. The topological order of
this DAG, shows us different “layers” that we can consider as the blocks of our candidate update
schedules. If we place the set F as the first block, the resulting update schedule respects each and
every labeling of labF , so since there is an update schedule, (G, labF ) is an update digraph. 2
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Figure 3.6: (a) {1, 6} is a FVS of G (b) A⊕ (c) G−A⊕ (d) Topological order of G−A⊕

For example, if for the digraph presented in Figure 3.6(a), we choose the {1, 6} set as FVS, the
following sets of positive arcs (Figure 3.6(b)) and negative arcs (Figure 3.6(c)) are generated. If
we follow the topological order of the negative arcs, the update schedule s = {1, 4, 6} {3} {5} {2}
is generated, which respects both positive and negative labels, therefore the label generated by
labF is update.

Proposition 3.12. Given n ∈ N even, there exists a labeling function lab such that (Kn, lab) is
an update digraph and ν(GP (Kn, lab)) = ν(Kn) = n

2
.

Proof. Let F ⊆ V (Kn) be a feedback vertex set of Kn such that |F | = n − 1. Then, let u be
the node that is not in F (whose input arcs have negative labeling in (Kn, labF )) has the following
behavior in GP (Kn, labF ): there is a loop in u, since there is a walk from u to u with the first
arc with positive labeling (going through any vertex in F ), for every arc with negative labeling
towards u, that arc is in GP (Kn, labF ), since there is a walk with the first arc with positive labeling
from any vertex in F to u (passing through any other vertex in F ). Finally, GP (Kn, labF ) is Kn

plus a loop in u, then the vertices in F form a subgraph with form Kn−1 which has n−2
2

disjoint
cycles. also considering the loop in u, GP (Kn, labF ) has n

2
disjoint cycles. 2
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Proposition 3.13. Given n ∈ N odd. Then, there is no labeling function lab such that (Kn, lab)
is an update digraph and ν(GP (Kn, lab)) = ν(Kn) = n−1

2
.

Proof. If we divide V (Kn) in two sets A and B, such that ∀u ∈ A, s(u) = 1 and ∀v ∈ B, s(v) = 2
(with |B| ≥ 1), GP (Kn, lab) would have the following characteristics: every vertex in B has a loop
and the vertices in A form a subgraph of form K|A| which has:

ν(K|A|) =

{
|A|
2

disjoint cycles if |A| is even
|A|−1

2
disjoint cycles otherwise

So GP (Kn, lab) has in total:

ν(GP (Kn, lab)) =

{
|A|
2

+ (n− |A|) disjoint cycles if |A| is even
|A|−1

2
+ (n− |A|) disjoint cycles otherwise

Finally, so that ν(GP (Kn, lab)) = n−1
2

then:

|A| =

{
n+ 1 if |A| is even

n otherwise

Which leads to a contradiction to the fact that |B| = n− |A| must be greater than 1. 2

3.3 FVS invariant

From Proposition 3.5 to 3.7, we study the relation of the transversal number (size of the smallest
feedback vertex set) of G and the transversal number of its parallel digraph. Moreover, we define
a special update schedule that allows us to have the same transversal number in both G and its
parallel digraph. But, how are these feedback vertex sets conformed?, do they have the same
vertices? We answer these questions below.

Proposition 3.14. Let (G, lab) be an update digraph. Given F ⊆ V (G), if F ∈ FVS(GP (G, lab)),
then F ∈ FVS(G, lab). Thus, τ(GP (G, lab)) ≥ τ(G lab).

Proof. By contradiction, let us suppose that there exists F ⊆ V (G) such that F ∈ FVS(GP (G, lab))
and F /∈ FVS(G, lab).

Then, there exists a cycle C = v0, . . . , vl with v0 = vl in (G, lab), such that ∀i ∈ {0, . . . , l},
vi /∈ F :

• If there is only one arc with positive labeling (vi, vi+1), then there exists a walk from vi to
vi with the first arc with positive labeling. Then, there exists a loop in vi in GP (G, lab), in
this way F /∈ FVS(GP (G, lab)), which is a contradiction.

• If there is more than one arc with positive labeling, the vertices in V⊕(C) form a walk
W = w0, . . . , wm with wm = w0 and m ≤ l such that ∀j ∈ {0, . . . ,m− 1}, there exists a walk
from wj to wj+1 with the first arc with positive labeling. Finally, the vertices in W form a
cycle C ′ ∈ GP (G, lab), in this way F /∈ FVS(GP (G, lab)), which is a contradiction.
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2

Remark 3.4. Figure 3.7 shows that given F ⊆ V (G), if F ∈ FVS(G, lab), not necessarily F ∈
FVS(GP (G, lab)).
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Figure 3.7: (a) F = {5, 7} is a FVS for (G, lab) (b) Brown cycles are not covered by F in GP (G, lab).

3.4 Interaction Graph with weighted arcs

So far we have studied the behavior of the transversal number and the packing number considering
arcs without weights, i.e., it is not taken into account what type of Boolean function generates
such arc in the interaction graph. But, what changes would occur if we consider such weights?
Would new definitions be necessary to study such cases?

Definition 3.3. A Boolean function f : Bm → B is increasing monotone on input u if for all
x ∈ Bm, xu = 0 and f(x) ≤ f(x + eu), and decreasing monotone on input u if for all x ∈ Bm,
xu = 0 and f(x) ≥ f(x+ eu), where eu ∈ Bm denotes the binary vector with all components equal
to 0, except for component u, which equals 1.

Definition 3.4. A signed interaction graph is obtained by associating a weight function ω to the
arcs of an interaction graph G. The weight function ω is defined for every arc (u, v) ∈ G as follows:

ω(u, v) =


+1 if fv is increasing monotone on input u

−1 if fv is decreasing monotone on input u

0 otherwise

Definition 3.5. Similarly, the weight function ω can be extended to walks (cycles, circuits or
paths) as follows, the weight of a walk is the product of the weight of its arcs.

Example 3.3. Figure 3.8 shows an example of weight of cycles

Definition 3.6. A signed parallel digraph is obtained by associating a weight function ωp to the arcs
of a parallel digraph GP (G, lab). The weight function ωp is defined for all arc (u, v) ∈ GP (G, lab)
as follows:

ωp(u, v) =


+1 if ∀W (u, v) ∈ G, ω(W (u, v)) = +1

−1 if ∀W (u, v) ∈ G, ω(W (u, v)) = −1

0 otherwise
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1

2 3

f1 = ¬x2

f2 = ¬x1 ∧ x3

f3 = (x1 ∧ x3 ∧ x2) ∨ ¬x2

C1 = 1, 3, 2, 1→ ω(C1) = (+1) · (+1) · (−1) = −1

C2 = 1, 2, 1→ ω(C2) = (−1) · (−1) = +1

C3 = 2, 3, 2→ ω(C3) = (0) · (+1) = 0
+1

−
−

+

+

0

Figure 3.8: Example of weight of cycles.

Example 3.4. An example of signed parallel digraph is shown in Figure 3.9. Note that the arc
from 2 to 3 in the signed parallel digraph has weight 0 because the walk W1 = 2, 3 has weight
ω(W1) = +1 and the walk W2 = 2, 1, 3 has weight ω(W2) = −1.
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Figure 3.9: (a) A signed interaction graph G (b) A labeled digraph (G, lab) (c) The signed parallel
digraph GP (G, lab).

With these new definitions, it is possible to adapt Lemma 3.8, in the following proposition.

Proposition 3.15. Let GP (G, lab) a signed parallel digraph. Then, for every cycle Ci ∈ GP (G, lab)
with positive weight, there exists a circuit in G with positive weight associated with Ci, and for every
cycle Cj ∈ GP (G, lab) with negative weight, there exists circuit in G with negative weight associated
with Cj.

Proof. By Definition 3.5, a cycle with positive weight in GP (G, lab) is formed by an even number
of arcs with negative weight in GP (G, lab), each arc with negative weight (by Lemma 3.1 and
Definition 3.6), arises from a walk with an odd number of arcs with negative weight in G. Then,
the concatenation of these walks forms a circuit which has an even number of arcs with negative
weight, so the circuit has positive weight.

Similarly, a cycle with negative weight in GP (G, lab) is formed by an odd number of arcs with
negative weight in GP (G, lab), each arc with negative weight (by Lemma 3.1 and Definition 3.6),
arises from a walk with an odd number of arcs with negative weight in G. Then, the concatenation
of these walks forms a circuit which has an odd number of arcs with negative weight, so the circuit
has negative weight. 2

Example 3.5. Let C1 = 2, 3, 2 be a cycle in GP (G, lab) (Figure 3.10(c)), which is associated with
the walk W1 = 2, 1, 2, 3, 4, 1, 2 in G (Figure 3.10(a)):

ωp(C1) = ωp(2, 3) · ωp(3, 2) = (−1) · (−1) = +1
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ω(W1) = ω(2, 1) · ω(1, 2) · ω(2, 3) · ω(3, 4) · ω(4, 1) · ω(1, 2) =

(+1) · (−1) · (+1) · (−1) · (−1) · (−1) = +1

Let C2 = 2, 2 be a cycle in GP (G, lab), which is associated with the walk W2 = 2, 1, 2 in G:

ωp(C2) = ωp(2, 2) = (−1) = −1

ω(W2) = ω(2, 1) · ω(1, 2) = (+1) · (−1) = −1
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Figure 3.10: (a) A signed interaction graph G (b) A labeled digraph (G, lab) (c) The signed parallel
digraph GP (G, lab).

Remark 3.5. The Figure 3.10 shows that a signed interaction graph without cycles with positive
weight (a), can generate a signed parallel graph with cycles with positive weight (c). Figure 3.10
also shows that a PFVS in GP (G, lab) is not necessarily a PFVS in G, since {2} is a PFVS for
GP (G, lab) and it is not a PFVS for G, the same happens with {3}.

Remark 3.6. Let u ∈ V (G) be a vertex that cover a cycle with positive weight in G, but u ∈
V (GP (G, lab)) does not necessarily cover a cycle with positive weight in GP (G, lab). Figure 3.11
shows an example about this.
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Figure 3.11: (a) {4} cover the cycle {4, 1, 2, 3, 4} with positive weight (c) {4} do not cover any cycle
with positive weight.

Remark 3.7. Figure 3.12 shows that given F ⊆ V (G), if F ∈ PFVS(G), F is not necessarily a
PFVS in GP (G, lab).

By refining the above proposition with the following remarks it is possible to obtain the following
lemma
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Figure 3.12: (a) F = {3} is a PFVS for G (c) Loop with positive weight in 5 is not covered by F in
GP (G, lab).

Lemma 3.16. Let (G, lab) be a regulatory update digraph. For every cycle Ci ∈ G with positive
weight, there exists a cycle C̃i ∈ GP (G, lab) such that ωp(C̃i) ∈ {0,+1} and V (C̃i) = V⊕(Ci)
and for every cycle Cj ∈ G with negative weight, there exists a cycle C̃j ∈ GP (G, lab) such that
ωp(C̃j) ∈ {−1, 0} and V (C̃j) = V⊕(Cj).

Proof. By Lemma 3.8, we know that for every cycle Ci ∈ G, exists a cycle C̃i ∈ GP (G, lab) such
that V (C̃i) = V⊕(Ci). We must show that if ω(Ci) = +1 then ωp(C̃i) ∈ {0,+1} and if ω(Cj) = −1
then ωp(C̃j) ∈ {−1, 0}.

Whether the weight of Ci is in {−1,+1}, the arcs that form Ci have weight in {−1,+1}, so the
arcs of C̃i also have weight in {−1,+1}. If some arc of C̃i with positive (or negative) weight arises
from another walk (with arcs out of Ci) with negative (or positive) weight, that arc has weight 0
in GP (G, lab). If some arc of C̃i has weight 0, then C̃i has weight 0.

If no arc of C̃i has weight 0 and Ci has positive weight, then the number of arcs with negative
weight in C̃i is even (otherwise, the number of arcs with negative weight in Ci would be odd), so
the weight of C̃i is +1.

If no arc of C̃i has weight 0 and Ci has negative weight, then the number of arcs with negative
weight in C̃i is odd (otherwise, the number of arcs with negative weight in Ci would be even), so
the weight of C̃i is −1. 2

Remark 3.8. Let F ⊆ V (G) be a PFVS of G, F is not necessarily a NNFVS of GP (G, lab).
Figure 3.13 shows an example about this.

Remark 3.9. The Figure 3.13 also shows that if F ∈ PFVS(G) and H ∈ NNFVS(GP (G, lab), F
is not necessarily a subset of H. In this case, F = {4} and H = {2}.

Finally, with this lemma, it is possible to conclude the following proposition.

Proposition 3.17. Let (G, lab) be a regulatory update digraph. Then, τ+(G) ≤ τ+0(GP (G, lab)).

Proof. As for every cycle with positive weight in G, its associated cycle in GP (G, lab) has weight
in {0,+1}, and since it is also possible that new cycles with positive weight appear in GP (G, lab)
(see Figure 3.10), then τ+(G) ≤ τ+0(GP (G, lab)). 2
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Figure 3.13: (a) {4} cover the cycle {4, 1, 2, 3, 4} with positive weight (c) {4} do not cover the cycle
{1, 2, 1} with weight 0

3.5 Conclusions

The findings presented in this chapter not only provide us with a crucial threshold regarding
the inherent structure of parallel digraphs, as elucidated through their transversal number and
packing number, but they also furnish us with invaluable insights. Beyond merely delineating the
characteristics of these digraphs, the results empower us to discern and comprehend the intricate
structure of an update schedule intricately linked to its corresponding labeled digraph. This
newfound understanding proves to be instrumental in paving the way for the subsequent chapters,
where the implications and applications of this structural knowledge are further explored and
harnessed for more comprehensive insights and practical implications. Thus, the revelations in
this chapter not only contribute to our theoretical understanding of parallel digraphs but also offer
a tangible and practical framework for addressing real-world problems in subsequent discussions.
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Chapter 4

Fixed Point Algorithm

The results and algorithms in this chapter correspond to the research published in [9]. As Bioin-
formatics is a biological journal, some concepts are referred to by other names (e.g., the interaction
graph is referred to as the regulatory graph).

4.1 Introduction

The fixed points of a network are, for example, associated to distinct types of cells defined by
patterns of gene activity [14, 42, 45]. In this chapter, we focus on finding the steady states of a
Boolean network using the fact that these steady states are invariant with respect to the update
mode.

The problem of finding the steady states or fixed points of a Boolean network is a difficult
task. In [6] it is shown that deciding if a network has a fixed point is NP-complete, and in [30]
it is proved that counting how many fixed points a Boolean network has is #P-complete. For
this reason, in the literature, several strategies have been proposed to find fixed points in Boolean
networks. Some of them are:

• Reduction methods: This strategy, used in [80, 82, 84], focuses on reducing the number
of variables of the network, and finding the fixed points in the reduced network.

• Representation as polynomial functions: This technique used in [41, 86] consists in
representing each Boolean function of the network as a polynomial function in the variables
x1, . . . , xn, such that the problem of finding fixed points in a Boolean network is reduced to
solving the system of equations generated by the polynomial functions.

• SAT-based methods: Because there are several algorithms that solve SAT problem with a
complexity better than 2n (For example, Rolf in [70] gets solutions for 3-SAT in O(1.323n)),
in [3, 27, 28, 53, 76, 77] algorithms are developed based on reducing the problem of finding
the fixed points of a Boolean network to define a function φ(x) associated with the Boolean
network and finding which values x satisfy it. Of these investigations, [27, 28] are oriented to
obtain all the fixed points of the network, while others are oriented to obtain a single fixed
point in Boolean networks with canalyzing functions [3], or in AND-OR networks [53, 76, 77].

• Methods based on Integer Programming: As in the case of SAT, [1] develop an algo-
rithm that transforms a Boolean network into a set of linear inequalities whose maximizes a
linear function of the form cTx is associated with the fixed points of the network.
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• Strategic Sampling: In [85], Zhang et al. develop a recursive algorithm that seeks to
identify all the fixed points of a Boolean network. In the case of networks with a maximum
in-degree of 2, the average time of this algorithm is O(1.19n) (where n is the number of
nodes).

• Methods based on Minimal Feedback Vertex Sets: A solution that uses the network
interaction digraph. In [2], Akutsu et al. present an algorithm that seeks to find the fixed
points of a set of vertices S (typically, of smaller size than n) and these fixed points are
propagated on the rest of the vertices of the network.

For a more detailed description of these and other methods see [39, 59, 81] and references therein.
So far, there is no known strategy that take advantage of that the set of fixed points of a

Boolean network is invariant to the update schedule. For this reason, a solution is proposed that
uses the information generated from the structural characteristics of the interaction digraph, to
choose an asynchronous update schedule that allows to find the fixed points of the Boolean network
in a faster way.

In this chapter we propose a new strategy to find the fixed points of a Boolean network which
consists in fixing the local states of a positive feedback vertex set P of the regulatory graph and
updating the other local states according to a sequential update schedule constructed from P . In
this way we reduce the problem of finding the fixed points of a Boolean network of n components to
check 2|P | state configurations, where P can be smaller than a feedback vertex set of the network.
Thus, the proposed algorithm is polynomial in the size of the network and exponential in the size
of P . Consequently, this method can be very efficient, with respect to other methods, in Boolean
networks with a small positive feedback vertex set, as for example ones with few positive cycles.
A particular case of this latter are the strong inhibition Boolean networks [39].

For the construction of the proposed algorithm we proved first that the dynamical behavior of
a Boolean network without positive cycles and with a fixed point is similar to an acyclic Boolean
network, i.e. it quickly converges to the fixed point from any initial configuration.

4.2 Definitions and Notations

To explain the algorithms of this chapter, we introduce some notation. Given f : Bn → Bn a BN
and u ∈ [n], the partial evaluation of f in the local function fu is the function fu : Bn → Bn such
that: ∀x ∈ Bn, fu(x) = (x1, . . . , xu−1, fu(x), xu+1, . . . , xn)

In this way, a sequential schedule π = (π1, π2, . . . , πn) is a permutation of [n]. The dynamics of
a BN f : Bn → Bn updated according to π is defined by: ∀x ∈ Bn, fπ(x) = fπn ◦fπn−1 ◦· · ·◦fπ1(x),
i.e. if x is the state of the network in a time step, fπ(x) is the state of the network in the next
time step.

To avoid confusion, we use a special notation for self-compositions of f : we denote by f 〈0〉 the
identity on Bn and for k ≥ 1 we set f 〈k〉 = f ◦ f 〈k−1〉. The concatenation of k times the sequential
schedule π is denoted πk. In this way fπ

k
= (fπ)〈k〉.

4.3 Boolean networks without positive cycles

The relationship between the fixed points and the positive and negative cycles in Boolean networks
has been greatly studied [7, 15, 16, 63, 64, 65]. In particular, in [7, 63] was proved that every
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Boolean network without positive cycles has at most one fixed point and, in addition, if the
network has a source non-trivial strongly connected component, then it has no fixed points.

On the other hand, F. Robert studied the Boolean networks without cycles and proved in
[67, 68] that these networks have a simple dynamical behavior with a unique attractor, which is
a fixed point, and where all initial states quickly converge to it. More precisely, he proved the
following theorem.

Theorem 4.1 (F. Robert). Let f : Bn → Bn be a Boolean network such that G(f) is acyclic.
Then,

1. f has a unique fixed point y ∈ Bn.

2. ∀x ∈ Bn, f 〈n〉(x) = y.

3. ∃π a sequential schedule such that ∀x ∈ Bn, fπ(x) = y.

In order to understand the following results, the following definitions are necessary:

Definition 4.1. Let f : Bn → Bn be a Boolean network, we denote the following sets (possibly
empty):

I1(f) = {v ∈ [n] : ∃c ∈ B,∀x ∈ Bn, fv(x) = c} .

In other words, v ∈ I1(f) if fv is constant. For all v ∈ I1(f), we denote cv to the constant value
of fv(x).

Recursively, we define ∀k ∈ N, k ≥ 2, Ik(f) in the following way:

Ik(f) = {v ∈ [n] : ∃c ∈ B,∀x ∈ Bn, fv(cu : u ∈ Ik−1(f);xu : u /∈ Ik−1(f)) = c}.

Similarly, v ∈ Ik(f) if the regulatory function associated to the component v with fixed value
cu on input u ∈ Ik−1(f) is a constant function. ∀v ∈ Ik(f), we denote cv to the constant value of
fv(cu : u ∈ Ik−1(f);xu : u /∈ Ik−1(f)).

From here, if v ∈ Ik(f), then:

∀t ≥ k,∀x ∈ Bn, f 〈t〉v (x) = cv.

In this case, we say that the component v is fixed at iteration k of f with value cv.

Proposition 4.2. The sets Ik(f) have the following properties:

1. ∀k ≥ 1, Ik(f) ⊆ Ik+1(f).

2. If ∃k ∈ N, Ik(f) = Ik+1(f), then ∀l ∈ N, Ik(f) = Ik+l(f).

3. If I1(f) = ∅, then ∀k ∈ N, Ik(f) = ∅.
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Proof.

1. By induction on k. First, we prove that I1(f) ⊆ I2(f). By definition, v ∈ I1(f) if fv is
a constant function. On the other hand, v ∈ I2(f) if fv with fixed value cu on each input
u ∈ I1(f) is a constant function. Therefore, I1(f) ⊆ I2(f).

Let us suppose that Ik(f) ⊆ Ik+1(f). Now, we prove that Ik+1(f) ⊆ Ik+2(f). Analogously,
v ∈ Ik+1(f) if fv with fixed value cu on each input u ∈ Ik(f) is a constant function. On the
other hand, v ∈ Ik+2(f) if fv with fixed value cu on each input u ∈ Ik+1(f) is a constant
function. Since Ik(f) ⊆ Ik+1(f), the inclusion Ik+1(f) ⊆ Ik+2(f) is direct.

2. To prove this, we prove that if Ik(f) = Ik+1(f) then Ik+1(f) = Ik+2(f).

Let us suppose that Ik(f) = Ik+1(f). If Ik+2(f) = ∅, by Property 1, Ik+1(f) = ∅. So, let v
be a component in Ik+2(f), by definition:

∃c ∈ B,∀x ∈ Bn, fv(cu : u ∈ Ik+1(f);xu : u /∈ Ik+1(f)) = c.

Since Ik(f) = Ik+1(f),

∀x ∈ Bn, fv(cu : u ∈ Ik(f);xu : u /∈ Ik(f)) = c.

Therefore, v ∈ Ik+1(f). For this reason, Ik+2(f) ⊆ Ik+1(f) and since Ik+1(f) ⊆ Ik+2(f), then
Ik+1(f) = Ik+2(f).

3. First, we prove that if I1(f) = ∅, then I2(f) = ∅.
By contradiction, let us suppose that I1(f) = ∅ and I2(f) 6= ∅. Let v be a component in
I2(f), then:

∃c ∈ B, ∀x ∈ Bn, fv(cu : u ∈ I1(f);xu : u /∈ I1(f)) = fv(x) = c.

Therefore, by definition, v ∈ I1(f) which is a contradiction.

Since I1(f) = I2(f) = ∅, by Property 2, ∀k ∈ N, Ik(f) = ∅.

2

Definition 4.2. Let f : Bn → Bn be a Boolean network. We say that f is an irreducible network
after k iterations or k-irreducible network if Ik(f) = Ik+1(f). If I1(f) = ∅, we say that f is an
irreducible network.

Definition 4.3. Let f : Bn → Bn be a Boolean network and k ∈ N. We define f Ik : Bn → Bn the
Boolean network associated to f and Ik(f) by:

∀x ∈ Bn, f Ik(x) = f(cu : u ∈ Ik(f);xu : u /∈ Ik(f)).

Remark 4.1. Note that if f is an irreducible network, then f Ik(x) = f(x).

Example 4.1. Figure 4.1 shows an example of a Boolean network f and the network f I3 , according
to Definition 4.3. Since f4 and f5 are the only constant functions, I1(f) = {4, 5} (with c4 = 1 and
c5 = 0). On the other hand, f1(x1, x2, x3, 1, 0, x6, x7) = x1 ∨ 1 ∨ 0 = 1, hence 1 ∈ I2(f). Moreover,
since there is no other component that satisfies the same condition, I2(f) = {1, 4, 5}.

Analogously, I3(f) = {1, 4, 5, 6, 7}. In a new iteration, I4(f) = I3(f), so f is 3-irreducible.
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f1 = x1 ∨ x4 ∨ x5
f2 = x2 ∧ x3 ∧ x6
f3 = x3 ∧ x4
f4 = 1
f5 = 0
f6 = x1 ∨ x3 ∨ x7
f7 = x1 ∧ x4

I1(f) = {4, 5} with c4 = 1 and c5 = 0
I2(f) = {1, 4, 5} with c1 = 1
I3(f) = {1, 4, 5, 6, 7} with c6 = 1 and c7 = 1

f I3 : 1

2

34

5

6

7

f I31 (x) = 1 ∨ 1 ∨ 0 = 1

f I32 (x) = x2 ∧ x3 ∧ 1 = x2 ∧ x3
f I33 (x) = x3 ∧ 1 = x3
f I34 (x) = 1 = 1

f I35 (x) = 0 = 0

f I36 (x) = 1 ∨ x3 ∨ x7 = 1

f I37 (x) = 1 ∧ 1 = 1

Figure 4.1: Example of Boolean networks f and f I3 .

Remark 4.2. It is important to remark that ∀k ∈ N and for all f : Bn → Bn:

1. V (G(f Ik)) = V (G(f)).

2. A(G(f Ik)) ⊆ A(G(f)).

3. If (u, v) ∈ A(G(f Ik)), then the sign of (u, v) is the same in G(f) and G(f Ik).

4. y is a fixed point of f if and only if y is a fixed point of f Ik and ∀v ∈ Ik(f), cv = yv.

Remark 4.3. Let f : Bn → Bn be a Boolean network such that Ik(f) = Ik+1(f) 6= ∅. Then, G(f Ik)
has the following properties:

1. ∀u ∈ Ik(f), d+
G(fIk )

(u) = 0.

2. If there exists a non-trivial strongly connected component (SCC), then there is a source non-
trivial strongly connected component (i.e. a SCC where the arcs incident to the vertices of
the component have their origin in vertices of the same component).

Next, we show that whether a Boolean network without positive cycles has a fixed point, then
its dynamical behavior is like a Boolean network without cycles. More precisely, we prove the
following theorem.

Theorem 4.3. Let f : Bn → Bn be a Boolean network without positive cycles. Then, the following
propositions are equivalent:

1. f has a unique fixed point y ∈ Bn.

2. ∀x ∈ Bn, f 〈n〉(x) = y.

3. ∃π a sequential schedule such that ∀x ∈ Bn, fπ(x) = y.
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Proof. The proof of (2) ⇒ (1) and (3) ⇒ (1) are straightforward, so we prove that (1) ⇒ (2)
and (1)⇒ (3).

Both proofs are very similar, so we give the proof for (1)⇒ (2).
First, notice that {I1, I2 \ I1, . . . , Ik \ Ik−1} is a partition of [n], we define an order of the vertices

π = (π1, . . . , πn) such that:

πi ∈ (Ij \ Ij−1) ∧ πi′ ∈ (Ij′ \ Ij′−1) ∧ j < j′ =⇒ i < i′.

Now we prove by induction that ∀i ∈ {1 . . . , k} , ∀t ≥ k, f
〈t〉
πi (x) = yπi .

If k = 1, π1 ∈ I1(f), then fπi is a constant function and therefore ∀t ≥ 1, f
〈t〉
π1 (x) = yπ1 .

Let us suppose that ∀i ∈ {1 . . . , k} , ∀t ≥ k, f
〈t〉
πi t(x) = yπi .

Now we need to prove that ∀t ≥ k + 1, f
〈t〉
πk+1(x) = yπk+1

.

f 〈t〉πk+1
(x) = fπk+1

(f 〈t−1〉(x)).

Since t ≥ k + 1, t− 1 ≥ k, then by hypothesis of induction:

f 〈t〉πk+1
(x) = fπk+1

(yπi : i ≤ k; x̃πi : i > k).

By definition of π, if πk+1 ∈ Ij \ Ij−1 then Ij−1 ⊆ {π1, . . . , πk}, therefore, by definition of Ij:

f 〈t〉πk+1
(x) = yπk+1

.

The proof for (1) ⇒ (3) works the same way to prove that ∀i ∈ {1, . . . , k}, f (π1,...,πk)
πi (x) =

fπi((f
πk−1 ◦ · · · ◦ fπ1)(x)) = yπi . 2

A difference between BNs with acyclic regulatory graphs and BNs without positive cycles is
that, in the first case, the sequential schedule referred in F. Robert’s theorem depends only on
the regulatory graph and not on the function. This latter is not true in the case of BNs without
positive cycles as shown in Example 4.2.

Example 4.2. Let f : B3 → B3 be a BN with interaction graph shown in Figure 4.2 and π =
(1, 2, 3) a sequential schedule. If we choose the functions:

f1(x) = 1, f2(x) = ¬x1 ∧ x3, f3(x) = x1 ∧ ¬x2,

then y = (1, 0, 1) is a fixed point of f and ∀x ∈ B3, fπ(x) = y.
On the contrary, if we choose the functions:

f1(x) = 1, f2(x) = ¬x1 ∨ x3, f3(x) = x1 ∨ ¬x2,

y′ = (1, 1, 1) is a fixed point of f , but fπ(1, 1, 0) = (1, 0, 1) 6= y′. In this case, if we choose
π′ = (1, 3, 2), then ∀x ∈ B3, fπ

′
(x) = y′.

On the other hand, as consequence of Theorem 4.3 the following corollary shows us that the
problem of determining the existence of a fixed point in a Boolean network without positive cycles
can be solved in polynomial time if the regulatory functions can be evaluated in polynomial time,
i.e. in O(nk) with k ≥ 0 a constant. Examples of regulatory functions whose evaluation can be done
in polynomial time are: threshold functions, hierarchically canalizing functions, strong-inhibition
functions, with a bounded in-degree, etc.
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Figure 4.2: Regulatory graph of a network without positive cycles.

Corollary 4.4. Determining whether a Boolean network f : Bn → Bn without positive cycles has
a fixed point can be done through n+ 1 applications of f on any state of the network.

In [7, 63] was proved the following theorem, known as the Thomas’s first rule:

Theorem 4.5 (Thomas’s first rule). Let f : Bn → Bn a BN without positive cycles. Then, f has
at most one fixed point.

A direct corollary from previous theorem is that if f is a BN without positive cycles such that
has an initial non-trivial strong component, then f has no fixed points [7].

Proof of Corollary 4.4. Thus, if y is a fixed point of f , then ∀x ∈ Bn, f 〈n〉(x) = y. Hence, it
suffices to check for some state x (for example, x = ~0 := (0, 0, . . . , 0)), if f 〈n〉(x) is a fixed point of
the network. In other words, if f 〈n〉(x) = f 〈n+1〉(x) , then f 〈n〉(x) is a fixed point of f . Otherwise,
f has no fixed points. 2

From Theorem 4.5 we can state the following result.

Lemma 4.6. Let f : Bn → Bn be a RBN without positive cycles. f has a unique fixed point if and
only if there exists k ∈ {1, . . . , n} such that ∅ 6= I1(f) ⊂ I2(f) ⊂ · · · ⊂ Ik(f) = [n].

Proof. (⇒) Let us suppose that f has a unique fixed point y ∈ Bn, we prove that ∀k ∈
{1, . . . , n} , |Ik| ≥ k. Since f does not have any positive cycle, by theorem Thomas’s first rule
all initial strong components of G(f) are trivial, hence there exists a vertex v1 ∈ [n] whose regu-
latory function is constant. Then, v1 ∈ I1(f) and |I1(f)| ≥ 1.

By contradiction, let us suppose that ∃l ∈ {2, . . . , n} such that |Il| < l. So, by Property 1 of
Proposition 4.2:

∃k ≤ (n− 1), Ik(f) = Ik+1(f) 6= [n].

In this case, ∀v /∈ Ik(f), ∃u /∈ Ik(f), such that fv depends on xu, i.e., ∀v /∈ Ik(f), ∃u /∈ Ik(f),
(u, v) ∈ A(f Ik).

Then, the in-degree of all vertices in [n]\Ik(f) is greater than 0, hence there exists a non-trivial
strong component of G(f Ik) induced by the vertices in [n]\Ik(f). Since ∀u ∈ Ik(f), d+

G(fIk )
(u) = 0,

there exists an initial non-trivial strong component in G(f Ik) and thus f Ik has no fixed points.
Hence, by Remark 4.2.4) f has no fixed points, which is a contradiction.

Therefore, if k ≤ (n− 1), then Ik(f) ( Ik+1(f) or Ik(f) = [n].

(⇐) If In(f) = [n], ∀v ∈ [n], ∀t ≥ n,∀x ∈ Bn, f 〈t〉v (x) = cv. Then, f has a fixed point and,
because f does not have any positive cycles, this fixed point is unique. 2

Theorem 4.3 is the main result of this article, this theorem allows the construction of the
proposed algorithm. This result shows that the behavior of Boolean network without positive
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cycles and that has a fixed point as attractor, is very similar to the behavior of an acyclic Boolean
network. In fact, we can partition the set vertices according to the time step in which they reach
their stable state. Since a partition of a set of n elements has at most n sets, this steady state is
reached in at most n iterations of the network.

4.4 Methods

4.4.1 Algorithm to detect the fixed points in Boolean networks from
a PFVS

In [7] was proved that for every RBN f there is an injection between its fixed points and the local
states of a PFVS of its regulatory graph G(f), allowing to conclude that the maximum number
of fixed points of a RBN f is 2τ

+(G(f)). A simple exercise shows that this result is also valid in
general Boolean networks [65]. In this way, we develop an algorithm that considers all the possible
states of a given PFVS and efficiently verifies, by application of f , which of them produces a fixed
point for the network. This is achieved thanks to the dynamical behavior of a BN without positive
cycles described in Theorem 4.3. First, we give some definitions and results.

Definition 4.4. Let f : Bn → Bn be a BN, P a PFVS of G(f) and a : P → B a function, which
can be represented by a vector a ∈ B|P |. We define the Boolean network fa : Bn → Bn as follows:

∀v ∈ [n], ∀x ∈ Bn, fav(x) =

{
a(v) if v ∈ P,
fv(x) if v /∈ P.

In other words, fa is the Boolean network obtained from f setting the value of each element v ∈ P
to a(v).

Example 4.3. Figure 4.3 shows an example of a BN f and a BN fa, where a(1) = a(3) = 0 and
a(2) = 1, according to Definition 4.4. Dark gray vertices represent P .
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f1(x) = x1 ∨ x4 ∨ x5

f2(x) = x2 ∧ x3 ∧ x6

f3(x) = x3 ∧ x4

f4(x) = ¬x7

f5(x) = 0
f6(x) = x1 ∨ x3 ∨ x7

f7(x) = x1 ∧ x4

fa1(x) = 0
fa2(x) = 1
fa3(x) = 0
fa4(x) = ¬x7

fa5(x) = 0
fa6(x) = x1 ∨ x3 ∨ x7

fa7(x) = x1 ∧ x4

Figure 4.3: A Boolean network f and a network without positive cycles fa.
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Note that G(fa) = G(f) − {(u, v) ∈ A : v ∈ P}. Hence, fa is a BN without positive cycles.
As a direct result, we have the following proposition.

Proposition 4.7. Let f : Bn → Bn be a BN, P 6= ∅ a PFVS of G(f) and a : P → B a function.
x ∈ Bn is a fixed point of f such that ∀v ∈ P, xv = a(v) if and only if:

1. x is a fixed point of fa,

2. ∀v ∈ P, fv(x) = a(v).

Proof. (⇒) Let x ∈ Bn be a fixed point of f such that ∀v ∈ P, xv = a(v), then, as x is a fixed
point of f , then ∀v, fv(x) = xv. Hence, by Definition 4.4, if v /∈ P, fav(x) = fv(x) = xv, and
if v ∈ P, fav(x) = a(v) = xv. Therefore, ∀v, fav(x) = xv, thus, x is a fixed point of fa and, by
hypothesis, condition (2) also holds.

(⇐) If x ∈ Bn is a fixed point of fa, then ∀v, fav(x) = xv. Hence, by Definition 4.4, if
v /∈ P, xv = fav(x) = fv(x).

Moreover, If ∀v ∈ P, xv = fav(x) = a(v) = fv(x).
Therefore, ∀v, xv = fv(x), then, x is a fixed point of f and ∀v ∈ P, xv = a(v). 2

The following proposition gives a bound on the number of iterations to reach the steady state
(when this exists) of a Boolean network without positive cycles with a sequential update schedule
compatible with the PFVS. The idea is show that in each sequential iteration of the network at
least one vertex of the PFVS fixes its value. In this way, after at most |P | + 1 iterations we can
check if the network has a fixed point.

In this way, we use Proposition 4.7 to define Algorithm 4.1, which finds the fixed points of a
given BN.

Proposition 4.8. Given f : Bn → Bn be a BN, whose regulatory functions can be evaluated in
time O(nk), k ≥ 0, and P a PFVS of G(f) Algorithm 4.1 finds the set of fixed points of f in time
O(2|P |n2+k).

Proof. The correctness of the algorithm is direct from Proposition 4.7 and Corollary 4.4. In
particular, if P 6= ∅, the instruction x ← fa〈n〉(~0) obtains a fixed point candidate (after n exe-
cutions of fa, for some a ∈ B|P |) that is checked in the next line according to Proposition 4.7.
Otherwise, i.e. f has no positive cycles, x ← f 〈n〉(~0) obtains a fixed point candidate (after n2

evaluations of regulatory functions) that is checked in the next line according to Corollary 4.4.
Finally, the running time of the algorithm is given by the total executed time in the applications
of the regulatory functions, which in the worst case is O(2|P |n2+k). 2

In order to make the Algorithm 4.1 faster, and following the ideas introduced in [11], we use
a sequential update schedule that allows a faster convergence to the fixed points when they exist.
By Theorem 4.3, the BNs without positive cycles have a sequential update schedule such that
they converge to the only fixed point, when there exists, in only one step. However, determining
such a schedule can be as difficult as finding the fixed points of the network, because it depends
on the value of each local activation functions as shown in Example 4.2. We propose to use a
sequential update schedule which depends only on the regulatory graph structure of input network.
More precisely, given a FVS F and a PFVS P contained in it, we determine in polynomial time
a sequential scheme such that the global activation function applied with this schedule in each
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Algorithm 4.1: BasicFixedPoint

Input: f a BN with n components and P a PFVS of G(f).
Output: S the set of fixed points of f .

1 S ← ∅;
2 if P 6= ∅ then
3 foreach a ∈ B|P | do

4 x← fa〈n〉(~0);
5 if (fa(x) = x) ∧ (∀u ∈ P, fu(x) = a(u)) then S ← S ∪ {x};
6 end

7 else

8 x← f 〈n〉(~0);
9 if (f(x) = x) then S ← {x};

10 end
11 return S
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π = (3, 1, 5, 7, 6, 2, 4)
π′ = (1, 3, 7, 6, 5, 2, 4)
π′′ = (3, 1, 7, 5, 6, 4, 2)

Figure 4.4: A digraph G(f) and orders compatible with F and P . Set P is denoted for dark gray
vertices and set F for light gray vertices.

iteration fixes at least the value of one vertex in F \ P (in the case that this is possible), then the
network is updated once more to fix the remaining vertices. Thus, the number of applications in
the new algorithm is reduced from n to |F | − |P |+ 1.

Definition 4.5. Given f : Bn → Bn a BN, F a FVS of G(f) and P ⊆ F a PFVS of G(f), We
say that a permutation π = (π1, π2, . . . , πn) on the set [n] is an order compatible with F and P if
it satisfies the following properties:

1. ∀πi ∈ (F − P ), ∀πj /∈ (F − P ), i > j.

2. ∀πi ∈ P, ∀πj /∈ P, i < j.

3. ∀πi, πj /∈ F, (πi, πj) ∈ A =⇒ i < j.

In the particular case of P = ∅, i.e. f is a BN without positive cycles, π is said to be compatible
with F if it satisfies 1 and 3.

Example 4.4. Figure 4.4 shows examples of orders compatible with F and P . Dark gray vertices
represent the PFVS P and light gray vertices represent F \ P .

Proposition 4.9. Let f : Bn → Bn be a BN, such that the regulatory graph G(f) does not have
positive cycles (P = ∅), F be a FVS of G(f), π be an order compatible with F , and y ∈ Bn. y is
the unique fixed point of f if and only if ∀x ∈ Bn, (fπ)〈|F |+1〉(x) = y.
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Proof. (⇒) Let us suppose that y ∈ Bn is the unique fixed point of f . Without loss of generality,
let us suppose that π = (1, 2, . . . , n). Then, by Theorem 4.3, there exist

I1(f) ( I2(f) ( · · · ( Ik−1(f) ( Ik(f) = [n]
such that:

∀j ∈ {1, . . . , k} ,∀v ∈ Ij(f),∀t ≥ j,∀x ∈ Bn, f 〈t〉v (x) = yv.

Now, we prove that by iterating f according to the order π, the n vertices fix their value in m
iterations (with m ≤ |F |+ 1).

To perform this, let us consider the following sequence of indices oi defined as follows:

o1 = min {j ∈ {1, . . . , k} : (Ij(f) ∩ F ) 6= ∅} ,
∀p ≥ 2, op = min {j > op−1 : ((Ij(f) \ Ij−1(f)) ∩ F 6= ∅) ∨ (j = k)} .

Notice that o1 < o2 < · · · < om = k and m ≤ |F |+ 1.

We prove that ∀i ∈ {1, . . . ,m} ,∀u ∈ Ioi ,∀t ≥ i, ∀x ∈ Bn, (fπ)
〈t〉
u (x) = yu.

By contradiction, let us suppose that:

∃i ∈ {1, . . . ,m} ,∃u ∈ Ioi ,∃t ≥ i, ∃x ∈ Bn, (fπ)〈t〉u (x) 6= yu.

Let:

i∗ = min
{
i ∈ {1, . . . ,m} : ∃u ∈ Ioi , ∃t ≥ i,∃x ∈ Bn, (fπ)〈t〉u (x) 6= yu

}
and

l∗ = min
{
l ≤ oi∗ : ∃u ∈ Il,∃t ≥ i∗,∃x ∈ Bn, (fπ)〈t〉u (x) 6= yu

}
.

Let u∗ ∈ Il∗ \ Il∗−1 be such that ∃t ≥ i∗, ∃x ∈ Bn, (fπ)
〈t〉
u∗ (x) 6= yu∗ . Then, by Definition 4.1,

∀t ≥ i∗,∀x ∈ Bn:

(fπ)〈t〉u∗ (x) = fπu∗((f
π)〈t−1〉(x))

= fu∗((f
π)
〈t〉
i (x) : i < u∗; (fπ)

〈t−1〉
i : i ≥ u∗).

Notice that l∗ > 1, then:

(fπ)〈t〉u∗ (x) = fu∗((f
π)〈t〉v (x) : v < u∗ ∧ v ∈ Il∗−1; (fπ)〈t〉v (x) : v < u∗ ∧ v /∈ Il∗−1;

(fπ)〈t−1〉
v (x) : v ≥ u∗ ∧ v ∈ Il∗−1; (fπ)〈t−1〉

v (x) : v ≥ u∗ ∧ v /∈ Il∗−1).

By definition of l∗, if v ∈ Il∗−1, then (fπ)
〈t〉
v (x) = yv. Moreover, If v ≥ u∗, then v ∈ F and,

therefore, if v ∈ F and v ∈ Il∗−1, then v ∈ Io(i∗−1)
and, thus, if v ≥ u∗ and v ∈ Il∗−1, then

(fπ)
〈t−1〉
v (x) = yv. Also, if i∗ = 1, then ∀l ≤ o1, F ∩ Il−1 = ∅:

(fπ)〈t〉u∗ (x) = fu∗(yv : v < u∗ ∧ v ∈ Il∗−1; (fπ)〈t〉v (x) : v < u∗ ∧ v /∈ Il∗−1;

yv : v ≥ u∗ ∧ v ∈ Il∗−1; (fπ)〈t−1〉
v : v ≥ u∗ ∧ v /∈ Il∗−1)

= fu∗(yv : v ∈ Il∗−1; (fπ)〈t〉v (x) : v < u∗ ∧ v /∈ Il∗−1;

(fπ)〈t−1〉
v (x) : v ≥ u∗ ∧ v /∈ Il∗−1).

By Definition 4.1, ∀t ≥ i∗,∀x ∈ Bn, (fπ)
〈t〉
u∗ (x) = yu∗ , which is a contradiction.

Therefore, in at most m iterations of fπ, all vertices in Iom(f) = Ik(f) are fixed.
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(⇐) Let us suppose that ∀x ∈ Bn, (fπ)〈|F |+1〉(x) = y, then:

fπ(y) = fπ((fπ)〈|F |+1〉(x)) = (fπ)〈|F |+2〉(x) = (fπ)〈|F |+1〉(fπ(x)) = y.

Since fπ(y) = y, then, y is a fixed point of f . 2

Theorem 4.10. Let F be a FVS of G(f), whose regulatory functions can be evaluated in time
O(nk), k ≥ 0, and P ⊆ F a PFVS of G(f), Algorithm 4.2 finds the set of fixed points of f in time
O(2|P |(|F | − |P |+ 1)n1+k).

Proof. As the Algorithm 4.1, the correctness of this algorithm is based on the fact that its
execution demonstrates each of the necessary conditions according to the Proposition 4.7. The
difference is that the way to find the fixed point of fa (for some a ∈ B|P |) is done according to
Proposition 4.9, i.e. instead of executing n times fa, faπ is executed |F | − |P |+ 1 times. For this
reason, the complexity of this algorithm is O(2|P |(|F | − |P |+ 1)n1+k). 2

Algorithm 4.2: FixedPoint

Input: f a BN with n components, F a FVS of G(f), P ⊆ F a PFVS of G(f), π an order
compatible with F and P .

Output: S the set of fixed points of f .
1 m← |F − P |;
2 S ← ∅;
3 if P 6= ∅ then
4 foreach a ∈ B|P | do

5 x← (faπ)〈m+1〉(~0);
6 if (fa(x) = x) ∧ (∀u ∈ P, fu(x) = a(u)) then S ← S ∪ {x};
7 end

8 else

9 x← (fπ)〈m+1〉(~0);
10 if (f(x) = x) then S ← S ∪ {x};
11 end
12 return S

4.4.2 Example of the algorithms

Example 4.5. This example shows the operation of the FixedPoint-Algorithm with a Boolean
network with τ+ = 1 and τ = 3. Note that in the tables in steps 3 and 5, the purple cells represent
the components that are fixed according to Definition 4.1

1. Given the following network, where {3, 4, 7} is a FVS and {3} is a PFVS:
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f1 = x3 ∨ x7

f2 = x4

f3 = (x2 ∧ x4) ∨ (x2 ∧ x6) ∨ (x4 ∧ x6)
f4 = x2 ∨ x8

f5 = x3

f6 = x1 ∨ x5

f7 = x1 ∨ x8

f8 = x5 ∧ x7

2. We choose an order compatible with the FVS and PFVS selected.

In this case, we choose π = (3, 1, 2, 5, 6, 8, 4, 7).

3. If a(3) = 0, the execution of (fa)π would be the following:

x1 x2 x3 x4 x5 x6 x7 x8

(fa)π

3 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0
5 1 1 0 0 0 0 0 0
6 1 1 0 0 0 0 0 0
8 1 1 0 0 0 0 0 0
4 1 1 0 1 0 0 0 0
7 1 1 0 1 0 0 0 0

((fa)π)2

3 1 1 0 1 0 0 0 0
1 1 1 0 1 0 0 0 0
2 1 0 0 1 0 0 0 0
5 1 0 0 1 0 0 0 0
6 1 0 0 1 0 0 0 0
8 1 0 0 1 0 0 0 0
4 1 0 0 1 0 0 0 0
7 1 0 0 1 0 0 0 0

((fa)π)3

3 1 0 0 1 0 0 0 0
1 1 0 0 1 0 0 0 0
2 1 0 0 1 0 0 0 0
5 1 0 0 1 0 0 0 0
6 1 0 0 1 0 0 0 0
8 1 0 0 1 0 0 0 0
4 1 0 0 1 0 0 0 0
7 1 0 0 1 0 0 0 0

4. Since (fa)(10010000) = 10010000 and f3(1001000) = 0 = a(3), then 1001000 is a fixed point
of f

5. If a(3) = 1, the execution of (fa)π would be the following:
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x1 x2 x3 x4 x5 x6 x7 x8

(fa)π

3 0 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0 0
2 0 1 1 0 0 0 0 0
5 0 1 1 0 1 0 0 0
6 0 1 1 0 1 1 0 0
8 0 1 1 0 1 1 0 1
4 0 1 1 1 1 1 0 1
7 0 1 1 1 1 1 1 1

((fa)π)2

3 0 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
2 1 0 1 1 1 1 1 1
5 1 0 1 1 1 1 1 1
6 1 0 1 1 1 1 1 1
8 1 0 1 1 1 1 1 0
4 1 0 1 1 1 1 1 0
7 1 0 1 1 1 1 0 0

((fa)π)3

3 1 0 1 1 1 1 0 0
1 0 0 1 1 1 1 0 0
2 0 0 1 1 1 1 0 0
5 0 0 1 1 1 1 0 0
6 0 0 1 1 1 1 0 0
8 0 0 1 1 1 1 0 1
4 0 0 1 0 1 1 0 1
7 0 0 1 0 1 1 1 1

6. Since (fa)(00101111) = 11101110, does not exist fixed point of f such that f3(x) = 1

Example 4.6. This example shows the operation of the PFVS-Algorithm. Green vertices represent
vertices in P , red vertices represent vertices in R\O, yellow vertices represent vertices in Y , orange
vertices represent vertices in R and O and white vertices represent vertices in U .

1. Given a labeled digraph and an order over its vertices (3,7,2,5,1,4,8,6). All vertices are added
to U .
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2. The vertex in U with lower index (the vertex 3) is discarded from PFVS (added to R). Since
∀v ∈ U ∪ Y , the subgraph induced by R ∪ {v} has no circuits, a new vertex is selected.

39



1 2

4

567
8

3
+

+ +

+
++

+

+

+

−

−

−

−

−
−

3. The next vertex (7) is discarded from PFVS. Since the subgraph induced by R ∪ {1} has a
negative circuit, (1) is added to Y . Similarly, (8) is added to Y .
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4. The next vertex (2) is discarded from PFVS. (4) is added to Y .
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5. The next vertex (5) is discarded from PFVS. Since the subgraph induced by R ∪ {6} has a
positive circuit, (6) is included in the PFVS (added to G). Since U is empty, the first step
is finished.
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6. For the second step (and following), all vertices in Y are added to U .
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7. The vertex in U with lower index (1) is discarded from the PFVS (added to R and O). Since
the subgraph induced by R∪{8} has a positive circuit (1,7,8,7,1), (8) is included in the PFVS.
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8. The next vertex (4) is discarded from PFVS. Since U is empty, the second step is finished.
Since no vertex in Y , the algorithm ends.
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4.4.3 Building a PFVS

FixedPoint algorithm requires as input a FVS F and a PFVS P ⊆ F of the regulatory graph of
a Boolean network. It is known that the problems of finding a minimum FVS and a minimum
PFVS in a signed digraph are both NP-complete [44, 55]. In this section we propose a polynomial
algorithm that allows to find a PFVS (not necessarily minimal) and a minimal FVS containing it.

Let G(f) = (V,A) be the signed regulatory graph of a BN f with n components. Given
(v1, v2, . . . , vn) an order over V , Algorithm 4.3 classifies the vertices of G(f) in the following sets:

• P : A set of vertices that is a PFVS of G(f).

• O: A set of vertices such that P ∪O is a minimal FVS of G(f).

• R: The rest of the vertices of G(f).

In addition, the algorithm considers the following auxiliary sets:

• Y : A set of vertices that covers some circuit.

• U : The vertices that have not yet been assigned to any set.

The operation of the algorithm is as follows:
First, we classify vertices with positive loop directly into P . Subsequently, the negative loops

are removed from the arcs of G(f).
Then, the first phase begins. All vertices that are not in P or R, are incorporated in U to be

visited. Then, the first vertex in U (according to the input order) is incorporated into R (i.e., it
is discarded from the PFVS) and if this vertex originally had a negative loop, it is incorporated
into O (since that vertex has to be part of the FVS). Subsequently, for each vertex v ∈ U ∪ Y ,
G′′ (the subdigraph induced by R ∪ {v}) is calculated, where, if G′′ has a circuit, v is removed
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from U and from Y (since v covers some circuit in G(f)), and then, if G′′ has a positive circuit,
v is incorporated in P (since v is the only unclassified vertex of the positive circuit of G′′), and
otherwise, v is incorporated into Y (since it covers some circuit, but no positive circuit is known,
to add v to P ). Once U is empty, the first phase is terminated.

If at the end of the first phase, there are vertices that are neither in P nor in R (for example,
they are in Y ), a second phase begins. The only difference of this phase (and subsequent ones)
with respect to the first phase, is that if a vertex is sent to R it is automatically sent to O (since
this phase, all unclassified vertices cover some circuit, but being discarded, it means that they do
not cover any positive circuit, so they are part of the FVS).

If at the end of the second phase some unclassified vertices remain, a third phase begins under
the same conditions of the second phase, and so on.

Notice that, the constructed PFVS is not minimal, since a vertex can be included in P because
it covers a positive circuit (not necessarily a positive cycle), but the FVS is minimal, because the
algorithm works looking for cycles in G(f)−P −O, abstract, once we add a vertex to P ∪O every
cycle covered for this vertex it is eliminated of G(f)− P −O, so the only reason because a vertex
is included in P ∪ O is that there exists a cycle that is not covered for another vertex in P ∪ O,
therefore P ∪O is a minimal FVS.

A simpler implementation of force-subroutine

The following algorithm is the way we implement the force-subroutine.
A vertex v ∈ V (G) is an ancestor of a vertex u if v ∈ R and exists a path P (v, u) such that
∀w ∈ P (v, u), w ∈ R. The set of ancestors of u is denoted by Anc(u). A vertex v ∈ V (G) is a
descendant of a vertex u if v ∈ U ∪ Y and exists a path P (v, u) such that ∀w ∈ P (v, u), w 6= u
implies w ∈ R. The set of descendants of u is denoted by Dec(u). The sets Bef(u) and Aft(u)
contain the elements related to u (the last vertex added to R) that can form a circuit. If there is
an arc that goes from a vertex a ∈ Aft(u) to a vertex b ∈ Bef(u), it means that there is a circuit
formed by:

• The path from b to u,

• The path from u to a and

• The arc from a to b.

The sign of this circuit determines how the vertex a is classified (If the circuit is positive, a is
added to P . If the circuit is negative, a is added to Y ).

The sets Anc(u),Dec(u),Bef(u) and Aft(u) contain elements of the form (v, σ), where v is a
vertex, and σ is a sign (+ or −). Let x be an element of any of these sets, we denote v(x) to the
vertex associated with the element x, and we denote σ(x) to the sign associated with the element
x. The notation Dec(u) represents all the elements of the Dec(u) set but with the opposite sign.

Heuristics for the order of the vertices

Different orders of the vertices as input of PFVS algorithm can generate different PFVS as outputs,
so it may be necessary to define some heuristics to choose an appropriate order of the vertices. In
this chapter we use random order and Min-order defined as follows:

• Min-order: the vertices are ordered according:
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Algorithm 4.3: PFVS

Input: The signed regulatory graph G(f) of a BN f with n components and (v1, . . . , vn) an
ordered sequence of V .

Output: A PFVS P of G(f), and a FVS F of G(f) such that P ⊆ F .
1 V ⊕ ← {u ∈ V : (u, u) is a positive arc of G(f)};
2 V 	 ← {u ∈ V : (u, u) is a negative arc of G(f)};
3 G′ ← G(f)− {(u, u) ∈ A : u ∈ V 	};
4 P ← V ⊕; O ← ∅; R← ∅;
5 phase← 1;
6 while (P ∪R) 6= V do
7 U ← V \ (P ∪R);
8 Y ← ∅;
9 while U 6= ∅ do

10 u← vertex in U with lowest index;
11 U ← U \ {u}; R← R ∪ {u};
12 if (phase > 1) ∨ (u ∈ V 	) then O ← O ∪ {u};

// Force-subroutine

13 foreach v ∈ U ∪ Y do
14 G′′ ← G′[R ∪ {v}];
15 if G′′ has a circuit then
16 U ← U \ {v}; Y ← Y \ {v};
17 if G′′ has a positive circuit then P ← P ∪ {v};
18 else Y ← Y ∪ {v};
19 end

20 end
// end Force-subroutine

21 end
22 phase← phase + 1;

23 end
24 F ← P ∪O;
25 return P and F
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Algorithm 4.4: Force-subroutine

// During initialization

1 foreach v ∈ V (G) do
2 Anc(v)← ∅; Dec(v)← ∅;
3 end
// Force-subrutine, "u" is the selected vertex in PFVS-Algorithm

4 Bef(u)← Anc(u) ∪ {(u,+)};
5 Aft(u)← ∅;
6 temp← ∅;
7 foreach v ∈ N+(u) do
8 if v ∈ U ∪ Y then Aft(u)← Aft(u) ∪ {(v, σ(u, v))};
9 if v ∈ R then

10 if σ(u, v) = + then temp← Dec(v);

11 else temp← Dec(v);

12 end

13 end
14 while temp 6= ∅ do
15 foreach t ∈ temp do
16 temp← temp \ {t};
17 if v(t) ∈ U ∪ Y then Aft(u)← Aft(u) ∪ {t};
18 if v(t) ∈ R then
19 foreach d ∈ Dec(v(t)) do
20 temp← temp∪{(v(d), σ(d) · σ(t))}
21 end

22 end

23 end

24 end
25 foreach (a, b) ∈ Aft(u)× Bef(u) do
26 if (v(a), v(b)) ∈ A(G) then
27 U ← U \ {v(a)};
28 Y ← Y \ {v(a)};
29 σ ← σ(a) · σ(b) · σ(v(a), v(b));
30 if σ = + then P ← P ∪ {v(a)};
31 else
32 Y ← Y ∪ {v(a)};
33 Dec(b)← Dec(b) ∪ {(a, σ(a) · σ(b))};
34 Anc(a)← Anc(a) ∪ {(b, σ(a) · σ(b))};
35 end

36 else
37 Dec(b)← Dec(b) ∪ {(a, σ(a) · σ(b))};
38 Anc(a)← Anc(a) ∪ {(b, σ(a) · σ(b))};
39 end

40 end
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1. Their degrees, from lowest to highest.

2. If two or more vertices have equal degree then by in-degree, from lowest to highest.

3. If the equality persists, in alphabetical order.

Figure 4.5 shows an example of Min-order.
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1 2 3 4 5 6 7
degree 8 5 5 5 1 5 5

in-degree 4 3 2 3 0 3 2
Min-order: (5, 7, 3, 6, 4, 2, 1)

Figure 4.5: A signed regulatory graph G(f) and the order of its vertices according to Min-order.

4.4.4 Random Boolean networks with a given τ and τ+

In order to evaluate the performance of our algorithms we generate random BNs with a given
number of n components, a minimum FVS τ and a minimum PFVS τ+. These networks have
random regulatory graphs constructed from a vertex set with positive loops P with |P | = τ+,
a vertex set with negative loops F − P with |F − P | = τ − τ+ and an additional set of n − τ
vertices. The arcs of the digraph, different from the loops, are randomly chosen in such a way their
orientations are mostly forward and the backward arcs are those ending at the first vertex of P as
shown in Figure 4.6 (a). Thus, the resulting digraph is strongly connected. Furthermore, the signs
of the arcs are also randomly chosen. In this way, P is a minimum PFVS and F := F −P ∪P is a
minimum FVS of the digraphs. The minimum in-degree and out-degree of the vertices were set to
2 and the maximum values of the in-degrees and out-degrees are unbounded. Next, we replace the
loops by cycles of length 2 of the same sign without changing the value of τ and τ+ of the digraph
in order to have different possible PFVS and FVS and keeping the minimum value in-degree and
out degree equal to 2 and with maximum values non-bounded as shown in Figure 4.6 (b). The
regulatory functions used are of the type strong-inhibition, i.e. they are defined as:

fj(x1, . . . , xn) =
∧

i:σ(i,j)=−1

x̄i ∧
∨

i:σ(i,j)=1

xi.

In some cases we also used BNs of type AND-NOT (i.e. with regulatory functions like the strong-
inhibitions where the ∨-connector is replaced by the ∧-connector).

Strong-inhibition Boolean networks and AND-NOT networks have been used in different models
of regulatory biological systems [39, 82].

4.5 Results

We first tested the running time of FixedPoint algorithm in random BNs with a given number of
n components and known minimum PFVS and FVS. Furthermore, these networks have strongly
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Figure 4.6: Random Boolean networks.

connected regulatory graphs, with minimum in-degree and out-degree greater than or equal to 2
and maximum in-degree and out-degree unbounded.

The average times obtained in seconds with one hundred networks tested in each case, are
shown in Figures 4.7 and 4.8. We can see that the time performance of FixedPoint algorithm
grows exponentially with the value of τ+ and polynomially with the size of the network.

The results of PFVS algorithm using different heuristics to chose the order of the vertices are
presented in Figure 4.9. We can see that running time of the algorithm depends mainly on the size
of the network and not on the sizes of the positive feedback vertex sets. Besides, in the constructed
random networks as well as in networks from the literature described in Table 4.1 the performance
of the min-order heuristic is better than the random one.

The correctness and time performance of FixedPoint algorithm and PFVS algorithm together
were also tested with networks from the literature where the sets of fixed points obtained coin-
cides with those published. The results of these tests were obtained with a PC 3.60GHz Intel
Core i7 processor with 16GB of RAM and can be directly checked with the implementation Fixed-
PointsCollector located at http://www.inf.udec.cl/~lilian/FPCollector/. We can observe
that the running times obtained in these networks are short, probably due to the small size of
their positive feedback vertex sets. The latter is also observed in another family of published net-
works, which are shown in Table 4.2, where the times obtained are compared with those obtained
when executing the latest available versions of [81] and [84] algorithms, using the same PC. In
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Time performance of FixedPoint algorithm
for different PFVS sizes (τ = 15)
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Figure 4.7: Results of FixedPoint algorithm .

Time performance of FixedPoint algorithm
for different network sizes (τ = 15)
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Figure 4.8: Results of FixedPoint algorithm .
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Time performance of PFVS algorithm
for different network sizes (τ = 15, τ+ = 5)
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Figure 4.9: Results of PFVS algorithm .

Table 4.1: Performance of FixedPoint algorithm in real networks.

Network n FP |P | T(min) T(rand)
Cancer cell [83] 8 5 4 6.952 8.248
Cancer backbone [83] 8 12 5 7.019 7.321
Budding yeast [50] 11 7 6 5.963 7.036
Fission yeast [25] 10 12 4 8.980 9.416
Arabidopsis Thaliana [74] 13 10 7 8.938 8.919
T-helper cell [54] 23 3 3 7.407 13.512
T-cell receptor [48] 40 1 1 12.782 29.895
HGF [75] 66 2 3 17.286 61.969
Apostosis model 1 [49] 12 2 2 6.923 8.181
Apostosis model 2 [49] 12 4 2 6.870 9.170
Apostosis model 3 [49] 3 4 2 5.143 6.174
Drosophila melanogaster [4] 60 10 9 19.140 64.565
Ventral spinal cord [51] 8 5 4 6.751 7.126

|P | is the size the PFVS obtained with min-order.

T(min) and T(rand) correspond to the time in milliseconds of the PFVS-Alg.+FP-Alg. using Min-order and random-order (in this case,

its considered the execution of n/2 random permutations to choose the smallest PFVS), respectively.
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Table 4.2: Time Performance Comparison.

Our Veliz- Zañudo
Network n |P | algor. Cuba & Albert
HGF Signaling in Keratinocytes [75] 68 3 0.451 2.347 1.752
T Cell Receptor Signaling [72] 101 1 0.347 2.355 1.839
Signaling in Macrophage Activation [61] 321 3 0.464 2.406 12.369
Yeast Apostosis [47] 73 3 0.378 2.370 34.059
Influenza A Virus Replication Cycle [52] 131 12 0.407 3.599 107.969
T-LGL Survival network (v. 2011) [71] 60 10 0.580 3.152 18.825
EGFR & ErbB Signaling [73] 104 2 0.356 1.185 > 1 hour
Signal Transduction in Fibroblasts [40] 139 39 > 3 days 39.122 > 1 hour
Random strong-inhibition BNs with 300 15 8.508 4321.026 > 6 hours
minimum in-degree 2
Random strong-inhibition BNs with 300 15 5.387 > 1 hour > 6 hours
minimum in-degree 6

|P | is the size the PFVS obtained with min-order. Times presented in seconds according our simulations.

Table 4.2, it can be seen that, for networks with a small τ+, our times are shorter than those
obtained by the Veliz-Cuba and Zañudo & Albert algorithms, however, the same does not occur
when τ+ is large. Also, the difference between Veliz-Cuba and Zañundo & Albert algorithms is
coherent with the results shown in [81].

On the other hand, the algorithms FixedPoint algorithm and PFVS algorithm were also tested
together to find the fixed point sets in random strong-inhibition BNs and AND-NOT networks with
set values n = 300, τ+ = 15 and τ = 20 and different values of k corresponding to its minimum in-
degree and minimum out-degree of the its regulatory graphs. The results obtained and displayed in
Figure 4.10 show that the running times of FixedPoint algorithm +PFVS algorithm do not increase
significantly with the value of k, which means that both algorithms can work well together in BNs
with large values (even unbounded) of in-degree and out-degree as long as the found PFVS is
small and the regulatory functions of the network can be evaluated in polynomial time. The latter
differentiates our algorithm from others whose performance depends strongly on the in-degree or
out-degree of the network [81, 85, 84].

4.6 Conclusions and future work

In the modeling of biological systems by Boolean networks usually the regulatory graph of the net-
work is known as well as the type of interaction between their components (activation, inhibition).
In this way, it seems natural to use this information to determine the fixed points of a network. In
this chapter, we have constructed FixedPoint algorithm to find the set of fixed points of a Boolean
network based mainly on the structure of the positive cycles of its regulatory graph and to a lesser
extent on the size of the network. This can be considered an improvement to the results obtained
by [2], since the set of states to test is smaller and, in the case that τ = τ+, our algorithm works
the same way. The theoretical foundation of the algorithm is given by Theorem 4.3, which provides
a nice characterization of the dynamical behavior of Boolean networks without positive cycles and
with a fixed point.
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Time performance of FixedPoint algorithm + PFVS algorithm
for different in-degree
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Figure 4.10: Performance of FixedPoint algorithm + PFVS algorithm in random strong-inhibition
BNs and AND-NOT networks with different values k of minimum in-degree and out-degree.

On the other hand, our algorithms work well in BNs with large values (even unbounded) of
in-degree and out-degree as long as the found PFVS is small and the regulatory functions of the
network can be evaluated in polynomial time. This is an advantage over others algorithms whose
performance depends strongly on the in-degree or out-degree of the network.

The efficiency of FixedPoint algorithm depends mainly on the size of the input PFVS. Due to
this, it is important to have a PFVS as close to the minimum as possible. In this sense, it is clear
that PFVS algorithm can be improved. One improvement could be done implementing an efficient
algorithm to decide the existence of a positive cycle in a signed digraph. This latter problem, which
is equivalent to the existence of an even cycle in a digraph [55], is a surprisingly difficult problem
and whose algorithmic complexity was unknown for a long time. Although Robertson, Seymour
and Thomas finally proved that this decision problem can be solved in polynomial time [69], the
implementation of such algorithm is not easy to do which makes it one of our future challenges.
Another way to improve PFVS algorithm is the possibility of building a fixed-parameter tractable
algorithm to determine a PFVS of minimum size, i.e. an algorithm whose complexity depends
mainly on this size and not on the size of the regulatory graph. It is known that this type of
algorithm exists to solve the minimum FVS problem in digraphs [23]. However, it is an open
problem, at our knowledge, in the case of minimum PFVS in signed digraphs.

In future work it would be important to explore methods to reduce the size of a network that
conserve τ+. Also, since the efficiency of the FixedPoint algorithm depends on the size of a input
PFVS, it is important to study the relationship between τ+ and other parameters of the regulatory
graph of a Boolean network such as: minimum and maximum in-degree, out-degree and degree
distributions.
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Chapter 5

Dynamically Equivalent Network
problem

5.1 Introduction

Parallel digraphs, which are preliminary presented by F. Robert [67, 68], calling them Gauss-Seidel
operator, are a widely used tool over the years. Thanks to [36, 12], equivalence classes have been
defined between different update schedules based on their update digraph, so that elements in the
same class have the same dynamic behavior.

In this sense, in [21] the dynamics of discrete neural networks with deterministic update sched-
ules is studied and in [10] it is studied how many different dynamics can exist in a Boolean network
when the update schedule changes. In the particular case of disjunctive networks, in [8] it is studied
the complexity of deciding whether there exists a limit cycle of a given length k for some update
schedule, and in [34] it is classified them according to the robustness of their dynamics concerning
changes in the update schedule, all this using parallel digraphs.

However, to our knowledge, the following questions have been little explored: What other
networks have the same dynamics as that of a given network? What dynamics are only yielded
by a parallel schedule? Research closer to this one is [37], with the difference being that while
authors go in one direction, our research goes in the opposite direction, i.e., the authors in [37]
study among other things how the network changes when it is updated with a given sequential
schedule, while in this chapter we are interested in studying whether it is possible to obtain a given
network from some other network updated with some block-sequential schedule.

This chapter addresses the above questions. For that, our approach as follows: in Section 5.2
we define the notations that are used. Then, in Section 5.3, we formally define the problem and
prove that it is NP-hard in the general case. In Section 5.4, we restrict our problem to disjunctive
Boolean networks. Later, in Section 5.5, we present an algorithm that decides the problem defined
in Section 5.4 in polynomial time for disjunctive (conjunctive) networks. Finally, in the last section,
the conclusions reached are presented.

5.2 Definition and notation

Definition 5.1. Given f : Bn → Bn a Boolean network, f is called a disjunctive Boolean network
if: ∀u ∈ [n], fu(x) = 1⇐⇒ (∃v ∈ N−f (u), xv = 1).
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We observe that the global transition function of a disjunctive Boolean network is completely
described by its interaction graph.

Definition 5.2. Let f : Bn → Bn be a Boolean network, xt = (xt1, . . . , x
t
n) ∈ Bn a state configu-

ration and s = B1, B2, . . . , Bm a block-sequential update schedule. The dynamical behavior of f
updated according to s is given by:

∀v ∈ B1, xt+1
v = fv(x

t). (5.1)

∀v /∈ B1, xt+1
v = fv(x

t+1
u : s(u) < s(v);xtu : s(u) ≥ s(v)) (5.2)

The expression in (5.1) is because when updating the elements in B1, no other elements have
been updated. The expression in (5.2) is because at the time of updating xv, if its dependency
(xu) belongs to a previous block it has already been updated (xt+1

u ) and if its dependency belongs
to a later block (or the same block) it takes its value without updating (xtu).

This definition is an interpretation of what was introduced by F. Robert in [67], where the
origin of this expression is explained in depth.

This is equivalent to applying a function f s to x:

xt+1 = f s(xt),

where f s is defined by:

∀v ∈ B1, f sv (x) = fv(x). (5.3)

∀v /∈ B1, f sv (x) = fv(f
s
u(x) : s(u) < s(v);xu : s(u) ≥ s(v)) (5.4)

It is easy to prove that f s is equivalent to:

f s = fBm ◦ fBm−1 ◦ · · · ◦ fB2 ◦ fB1

with fBi : Bn → Bn given by:

∀x ∈ Bn, fBi
v (x) =

{
xv if v /∈ Bi

fv(x) if v ∈ Bi.

Note that, under this definition, f = f sp . In [12] was proved that if s ∼G(f) s
′, then f s = f s

′
.

Moreover, if f is a disjunctive Boolean network, then, by definition, f s is also a disjunctive Boolean
network. This is because the family of disjunctive Boolean functions is closed under composition.

In this way, the dynamical behavior of f updated according to s is equivalent to the dynamical
behavior of f s updated according to the parallel schedule.

An example of a Boolean network f updated according to a block-sequential update schedule
s is shown in Figure 5.1(a) and Figure 5.1(c).

Figure 5.1 shows that, obtaining G(f s), that is, the interaction graph that presents the actual
dependencies of the local functions of f updated according to s, is not a simple task. In fact, it
was proved to be a DP-complete problem [60]. For example, f s5 is a constant function 0, when the
function f5 depends on x2 and x4. Obtaining G(f s) depends on the local functions of f and how
they interact with each other. For this reason, to study this, we use the parallel digraph. This
digraph represents the potential effective dependencies of a network if it were to be updated in
parallel.
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f1(x) = x1 ∨ x4

f2(x) = x2 ∧ x4

f3(x) = x4 ∧ ¬x5

f4(x) = x3 ∧ ¬x5

f5(x) = x2 ∧ ¬x4

s = {2} {5} {3} {4} {1}

1

2

3 4

5

f s1 (x) = x1 ∨ (x4 ∧ ¬(x2 ∧ x4 ∧ ¬x4))
f s2 (x) = x2 ∧ x4

f s3 (x) = x4 ∧ ¬(x2 ∧ x4 ∧ ¬x4)
f s4 (x) = x4 ∧ ¬(x2 ∧ x4 ∧ ¬x4)
f s5 (x) = x2 ∧ x4 ∧ ¬x4

1

2

3 4

5

f s1 (x) = x1 ∨ x4

f s2 (x) = x2 ∧ x4

f s3 (x) = x4 ∧ ¬(0) = x4

f s4 (x) = x4 ∧ ¬(0) = x4

f s5 (x) = (x2 ∧ x4) ∧ ¬x4 = 0

(a) (b) (c)

Figure 5.1: (a) A Boolean network f and an update schedule s (b) The parallel digraph GP (f, s) (c)
The effective network fs.

5.3 Dynamically equivalent networks problem

In this chapter we focus on the inverse problem, i.e. given a dynamical behavior of a Boolean
network, we want to know if there exists a Boolean network with an update schedule different
from the parallel that produces the same dynamical behavior.

Definition 5.3. Let f, h : Bn → Bn be two Boolean networks and s an update schedule. We say
that (h, s) is dynamically equivalent to f if hs = f . Moreover, if h 6= f , or h = f and s �G(f) sp,
we say that (h, s) and f are non-trivially dynamically equivalent.

By Equation (2.1), remember that if h = f , for every s equivalent to sp, we have hs = f . And
there exists s 6= sp equivalent to sp if and only if G(f) is not strongly connected. Indeed, if G(f)
is not strongly connected, then there is at least one source (initial) strongly connected component.
Then, the two-block schedule s wherein the second block are the vertices of the source component
and in the first block, the rest of the vertices, is equivalent to sp. On the other hand, if G(f) is
strongly connected and s is equivalent to sp, then between any pair of vertices (u, v), there exists
a fully positive path from u to v, so by transitivity, s(u) ≥ s(v). Therefore, for any pair of vertices
u, v, s(u) = s(v), and thus s is the parallel schedule.

Example 5.1. Let f : B2 → B2 be the Boolean network defined by f(x1, x2) = (x2, x1) (see Fig-
ure 5.2(a)), let us prove that it does not exist another network non-trivially dynamically equivalent
to f .

Note that the only update schedules that are not equivalent to sp are s = {1} {2} and s′ =
{2} {1}.

Let us suppose that there exists a Boolean network h such that hs = f , where s = {1} {2}.
And let x ∈ {0, 1}2 be such that h2(x2, x2) 6= x1. Then,

hs(x1, x2) = (hs1(x1, x2), hs2(x1, x2)).

Since 1 ∈ B1,
hs1(x1, x2) = h1(x1, x2) = f1(x1, x2) = x2.
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Thus,
hs2(x1, x2) = h2(hs1(x1, x2), x2) = h2(x2, x2) 6= x1 = f2(x1, x2).

Therefore, there is no network h with update schedule s that are non-trivially dynamically
equivalent to f .

Analogously, it is possible to show that there is no network h non-trivially dynamically equiv-
alent to f when s′ = {2} {1}.

Example 5.2. On the other hand, if we consider the function f ′(x) = (f ′1(x), f ′2(x)) = (x1, x1)
(see Figure 5.2(b)) which only differ with f in the first local activation function, and s = {2} {1},
the Boolean network h′(x) = (h′1(x), h′2(x)) = (x1 ∨ x2, x1) satisfies h′s = f ′.

1 2 1 2

(a) (b)

Figure 5.2: Interaction digraph of the Boolean network from Example 5.1 and Example 5.2.

Using the above definition, we introduce the following problem:

Dynamically equivalent networks problem (DEN problem)

Input: A Boolean network f (encoded as a Boolean formula for each fi).

Question: does there exists a Boolean network h and an update schedule s, such that
(h, s) is non-trivially dynamically equivalent to f?

The universe of possible solutions is very large: for n components, there are O(2n
2n

) possible
Boolean networks and O(n!) possible update schedules [26]. The following result shows a relation
between different solutions:

Theorem 5.1. If there exists a solution to DEN problem then there exists a solution to DEN
problem with a block-sequential update schedule with two blocks.

To prove the previous theorem, we use the following lemma:

Lemma 5.2. Let h, f : Bn → Bn be Boolean networks and s = B1, B2, . . . , Bm with m > 1. If
hs = f , then there exists h̄ and s̄ such that h̄s̄ = f where s̄ = B1, B2, . . . , Bm−1 ∪Bm.

Proof. Without loss of generality, let us suppose that there exists u ∈ Bm−1 and v ∈ Bm such
that (u, v) ∈ A(h). If this condition does not hold, s̄ ∼G(h̄) s. We define h̄ as follows:

h̄v(x) =

{
hv(x) ∀v /∈ Bm,

hv(f
Bm−1(x)) ∀v ∈ Bm.
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Finally:

∀v ∈ Bj ∧ j < m, h̄s̄v(x) = h̄v(h̄
B′j−1 ◦ h̄B′j−2 ◦ · · · ◦ h̄B′1(x)). (5.5)

= hv(h
Bj−1 ◦ hBj−2 ◦ · · · ◦ hB1(x)). (5.6)

= hsv(x) = fv(x). (5.7)

∀v ∈ Bm, h̄s̄v(x) = h̄v(h
B′m−2 ◦ hB′m−3 ◦ · · · ◦ hB′1(x)). (5.8)

= h̄v(h
Bm−2 ◦ hBm−3 ◦ · · · ◦ hB1(x)). (5.9)

= hv(h
Bm−1(hBm−2 ◦ hBm−3 ◦ · · · ◦ hB1(x))). (5.10)

= hv(h
Bm−1 ◦ hBm−2 ◦ hBm−3 ◦ · · · ◦ hB1(x)). (5.11)

= hsv(x) = fv(x). (5.12)

For this reason, h̄s̄ = f . 2

1

2

3 4

5

f1(x) = x1 ∨ x4

f2(x) = x2 ∧ x4

f3(x) = x4

f4(x) = x4

f5(x) = 0

1

2

3 4

5

h1(x) = x1 ∨ x4

h2(x) = x2 ∧ x4

h3(x) = x4 ∧ ¬x5

h4(x) = x3 ∧ ¬x5

h5(x) = x2 ∧ ¬x4

s = {2} {5} {3} {4} {1}

1

2

3 4

5

h̄1(x) = x1 ∨ (x3 ∧ ¬x5)
h̄2(x) = x2 ∧ x4

h̄3(x) = x4 ∧ ¬x5

h̄4(x) = x3 ∧ ¬x5

h̄5(x) = x2 ∧ ¬x4

s̄ = {2} {5} {3} {4, 1}
(a) (b) (c)

Figure 5.3: (a) A Boolean network f (b) A solution with 5 blocks (c) A solution with 4 blocks.

Notice that, s̄ is non-equivalent to s if and only if there exists an arc from some vertex in Bm−1

to a vertex in Bm.

Proof of Theorem 5.1. If there exists a solution with an update schedule with k > 2 blocks,
applying the Lemma 5.2 successively, it is possible to construct a solution with 2 blocks. 2

To understand the real complexity of the problem, let us see the following theorem:

Theorem 5.3. DEN is NP-Hard.

Proof. To prove NP-Hardness we show that 3-SAT ≤p DEN. Let φ be a 3-CNF formula in
variables x1, . . . , xn. Without loss of generality, let us consider that φ has only non-trivial clauses;
a non-trivial clause Ci being a clause such that for each variable xj ∈ Ci, we have x̄j /∈ Ci. Note
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that eliminating trivial clauses from φ is a simple task. Now, we consider f : Bn+2 → Bn+2 as
follows:

∀u ∈ [n], fu(x) = xu,

fn+1(x) = φ(x1, . . . , xn) ∨ xn+2

fn+2(x) = xn+1.

See G(f) in Figure 5.4(a).
(⇒) If φ is satisfiable, we consider the function f̄ = f and the update schedule s = {1, . . . , n}{n+

1, n + 2}. Since φ is satisfiable and there exists x ∈ Bn such that φ(x) = 0 (because φ has only
non-trivial clauses), fn+1 depends on xu for some u ∈ [n], so s is not equivalent to the parallel
update schedule, and f̄ s = f .

(⇐) If φ is not satisfiable ∀u ∈ [n], fu(x) = xu, fn+1(x) = xn+2 and fn+2(x) = xn+1. See G(f)
in Figure 5.4(b). We see that the sub-graph induced by vertices n + 1 and n + 2 is isomorphic
to the digraph presented in Figure 5.2(a). And, as in that example, it is shown that there is no
Boolean network that is non-trivially dynamically equivalent to the disjunctive Boolean network
with this interaction sub-graph. Then there is also no Boolean network that is non-trivially dy-
namically equivalent to f . In this way, any update schedule that preserves the dynamical behavior
is equivalent to the parallel. 2

1 2 n

n+ 1 n+ 2

. . . 1 2 n

n+ 1 n+ 2

. . .

(a) (b)

Figure 5.4: Interaction digraph of the transformation defined in Theorem 5.3.

5.4 Dynamically equivalent disjunctive networks problem

As we can see, in the general case, the DEN problem is hard, therefore, we focus on disjunctive
networks, defining the following problem:

Dynamically equivalent disjunctive networks problem (D-DEN prob-
lem)

Input: A disjunctive Boolean network f (encoded as a Boolean formula for each fi).

Question: does there exists a disjunctive Boolean network h and an update schedule
s, such that (h, s) is non-trivially dynamically equivalent to f?

Why only restrict ourselves to disjunctive Boolean networks h?
As can be seen in Figure 5.5, there are non-disjunctive networks that can generate disjunctive

networks. But in this case, the equality between the parallel digraph and the effective digraph
produced by the composition of functions, as analyzed in Remark 2.1, is lost.
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1

2 3

h1(x) = x2 Y x3

h2(x) = x1 Y x3

h3(x) = x1

1

2 3

hs1(x) = (x1 Y x1) Y x1

hs2(x) = x1 Y x1

hs3(x) = x1

s = {3} {2} {1}

1

2 3

hs1(x) = x1

hs2(x) = 0
hs3(x) = x1

(a) (b) (c)

Figure 5.5: (a) A non-disjunctive Boolean network h (b) The parallel digraph GP (h, s) (a disjunctive
network) (c) The effective network fs (a disjunctive network).

Remark 5.1. Based on the last part of Definition 2.4, it is possible to define the parallel digraph
GP (f, s) = ([n], A) in terms of the labeled digraph as:

A = {(u, v) ∈ A(f) : labs(u, v) = ⊕} ∪ {(u, v) : ∃w ∈ N−f (v), (u,w) ∈ A ∧ labs(w, v) = 	}.

where the set {(u, v) : ∃w ∈ N−f (v), (u,w) ∈ A ∧ labs(w, v) = 	} represents the arcs generated for
the predecessors that were already updated in a previous block.

An example of parallel digraph is shown in Figure 5.1(b).
In the same way, given a labeled digraph (G, lab) without fully negative cycles, we can define

GP (G, lab) = ([n], A) as:

A = {(u, v) ∈ A(G) : lab(u, v) = ⊕}∪
{(u, v) ∈ [n]× [n] : ∃w ∈ [n], (w, v) ∈ A(G) ∧ (u,w) ∈ A ∧ lab(w, v) = 	} .

In this definition, if f is a disjunctive Boolean network and s is an update schedule, thenGP (G(f), labs) =
GP (f, s).

The following results are consequences of the definition of parallel digraph:

Lemma 5.4. Let h, f : Bn → Bn be two disjunctive Boolean networks and s an update schedule
such that hs = f . Then, for u, v ∈ [n]:

[(u, v) ∈ A(h) ∧ labs(u, v) = 	] =⇒ N−f (u) ⊆ N−f (v).

Proof. By Remark 2.1, we have that hs = f is equivalent to GP (h, s) = G(f). By contradiction,
let us suppose that there exists (u, v) ∈ A(h) such that labs(u, v) = 	 and N−f (u) * N−f (v).

Since N−f (u) \ N−f (v) 6= ∅, let w ∈ N−f (u) \ N−f (v), then, (w, u) ∈ A(f) and (u, v) ∈ A(h) with

labs(u, v) = 	, by definition of parallel digraph, there exists a vertex u ∈ N−h (v), such that
(w, u) ∈ A(f) and labs(u, v) = 	, therefore (w, v) ∈ A(f), which is a contradiction because
w /∈ N−f (v). 2
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Remark 5.2. Based on Lemma 5.4, for all those disjunctive Boolean networks whose vertex neigh-
borhoods are not comparable there is no network that is non-trivially dynamically equivalent. Some
examples are the disjunctive Boolean networks f : Bn → Bn such that:

• Complete digraphs without loops, for n ≥ 2, where:

∀v ∈ [n], N−f (v) = [n] \ {v}

• The double chain digraph with loops in the extreme vertices, for n ≥ 3, where:

∀v ∈ [n], N−f (v) =


{1, 2} if v = 1

{n− 1, n} if v = n

{v − 1, v + 1} otherwise

• The double cycle, for n ≥ 2 (with exception of n = 4), where:

∀v ∈ [n], N−f (v) =


{n, 2} if v = 1

{n− 1, 1} if v = n

{v − 1, v + 1} otherwise

Note that the condition of Lemma 5.4 is necessary but not sufficient, as shown in the following
example.

Example 5.3. The Figure 5.6 shows that given a disjunctive Boolean network f , if there are
vertices u, v ∈ [n] such that N−f (u) ⊆ N−f (v), then a network non-trivially dynamically equivalent
network does not necessarily exist. This Boolean network is known because the only equivalent
dynamic network is the trivial one, since according to the schedule {1}{2} there is no way to build
the arc (1, 2), and according to the schedule {2}{1} there is no way to build the arc (2, 1), (the
loop in 1 cannot be included for any h, since it is not in A(f)). Note also that it is true that
N−f (1) = {2} ⊆ {1, 2} = N−f (2).

1 2

Figure 5.6: N−f (1) ⊆ N−f (2) but the only network dynamically equivalent

is the trivial one.

However, if we consider the case of equal neighborhoods, we obtain a sufficient condition.

Proposition 5.5. Let f : Bn → Bn be a disjunctive Boolean network. There exists a disjunctive
Boolean network h and an update schedule s, such that (h, s) is non-trivially dynamically equivalent
to f and with only one negative arc (u, v) ∈ A(h) if and only if the following conditions are satisfied:

1. N−f (u) ⊆ N−f (v),

2. u /∈ N−f (v) \N−f (u),

3. For every vertex w ∈ N−f (v) \N−f (u), it does not exist a path from u to w in G(f)− v.
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Proof. Since f and h are disjunctive Boolean networks, we have that hs = f is equivalent to
GP (h, s) = G(f).

(⇒ 1.) This is true according to Lemma 5.4.
(⇒ 2.) Let us suppose that there exists a Boolean network h and an update schedule s, such

that (h, s) is non-trivially dynamically equivalent to f with only one negative arc (u, v) ∈ A(h)
and u ∈ N−f (v) \ N−f (u). Then (u, v) ∈ A(f) (because u ∈ N−f (v)) and (u, u) /∈ A(f) (because

u /∈ N−f (u)). Since (u, u) /∈ A(f) the only way to create (u, v) in f is that there exists a vertex
w ∈ [n] such that (u,w) ∈ A(f), (w, v) ∈ A(h) and labs(w, v) = 	, but since (u, v) is the only
negative arc of G(h), this path does not exist, therefore (u, v) /∈ A(f), which is a contradiction.

(⇒ 3.) Let us suppose that there exists a Boolean network h and an update schedule s, such
that (h, s) is non-trivially dynamically equivalent to f and with only one negative arc (u, v) ∈ A(h),
in this case s(u) < s(v). Also, let us suppose, there exists a vertex w ∈ N−f (v) \N−f (u), such that
there exists a path from u to w in G(f)− v. Since (u, v) is the only negative arc, all arcs in the
path from u to w in G(f) − v are in A(h) and their labels are ⊕, the same occurs with the arc
(w, v) (because w ∈ N−f (v)), so s(u) ≥ s(w) ≥ s(v). Therefore, s(u) < s(v) and s(u) ≥ s(v) which
is a contradiction.

(⇐) Let u∗ and v∗ be two vertices in [n] such that N−f (u∗) ⊆ N−f (v∗) and for every vertex

w ∈ N−f (v∗) \N−f (u∗), w 6= u∗ and it does not exists a path from u∗ to w in G(f)− v∗. We define
the Boolean network h : Bn → Bn such that:

A(h) =
(
A(f) \

{
(w, v∗) : w ∈ N−f (u∗)

})
∪ {(u∗, v∗)} .

Notice that:

N−h (v) =

{
N−f (v) if v 6= v∗

{u∗} ∪N−f (v∗) \N−f (u∗) if v = v∗

Let s = B1B2 where:

B2 = {v∗} ∪ {w ∈ V (h) : there exists a path from w to v∗ in G(h)− (u∗, v∗)}

Note that, B1 = V (h) \ B2 is not empty, since condition 3 ensures that the only path from u∗

to v∗ is the arc (u∗, v∗), so u∗ ∈ B1. Also, the only arc from a vertex in B1 to a vertex in B2

is (u∗, v∗), because if there exists a vertex u ∈ B1 such that u is in the in-neighborhood of a
vertex v ∈ B2 (v 6= v∗), then there is a path from u to v∗ and, therefore u ∈ B2 which is a
contradiction. In this way, for all v ∈ V (h) if v 6= v∗, (u, v) ∈ A(hs) is equivalent to (u, v) ∈ A(h),
therefore (u, v) ∈ A(hs) if and only if (u, v) ∈ A(f). Now, (u, v∗) ∈ A(hs) is equivalent to:
u ∈ N−f (v∗) \ N−f (u∗) (labs(u, v) = ⊕) or u ∈ N−hs(u∗) = N−f (u∗), since labs(u

∗, v∗) = 	. In this
way, (u, v∗) ∈ A(hs) if and only if (u, v∗) ∈ A(f).

Finally, it has been proven that there exists a disjunctive Boolean network h 6= f and s �G(h) sp
such that GP (h, s) = G(f). An example of f , h and s can be seen at Proposition 5.5. 2

Corollary 5.6. Let f : Bn → Bn be a disjunctive Boolean network. If there exist u, v ∈ [n] such
that N−f (u) = N−f (v), then there exists a disjunctive Boolean network h and an update schedule s
such that (h, s) is non-trivially dynamically equivalent to f .

Proof. If N−f (u∗) = N−f (v∗) then the conditions of Proposition 5.5 are satisfied. 2
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Figure 5.7: An example of h, f and (u∗, v∗) = (1, 3). Note that N−f (1) = {2, 5} ⊆ {2, 4, 5} = N−f (3)
and it does not exists a path from 4 to 1 in G(f)− 3.

5.5 Algorithm to decide D-DEN Problem

To design a strategy to recognize all the vertices that meet the necessary condition given by
Lemma 5.4, we introduce the following definitions:

Definition 5.4. Let f : Bn → Bn be a disjunctive Boolean network. We define the following set
of arcs:

A	(f) = {(u, v) ∈ [n]× [n] : u 6= v ∧N−f (u) ⊆ N−f (v)}.

This set represents all arcs in [n]×[n] that can be labeled	. Note that the inclusion relationship
of these sets is transitive, because if N−f (u) ⊆ N−f (w) and N−f (w) ⊆ N−f (v), then N−f (u) ⊆ N−f (v).

Remark 5.3. Note that in terms of A	(f) we can reinterpret the previous lemmas as follows:

1. By Lemma 5.4, if A	(f) = ∅, then there is no network (h, s) that is non-trivially dynamically
equivalent to f .

2. By Corollary 5.6, if A	(f) induces a digraph with at least one cycle, then there exist at least
two vertices with equal in-neighborhoods, for this reason, there exists a network non-trivially
dynamically equivalent to f .

3. By Proposition 5.5, if |A	(f)| = 1, there exists a network non-trivially dynamically equivalent
to f if and only if for all w ∈ N−f (v) \N−f (u), w 6= u and it does not exist a path from u to
w in G(f)− v.

Definition 5.5. Given a partially labeled digraph (G, lab) we denoted the sets of arcs lab⊕[G, lab]
and lab	[G, lab] as follows:

lab⊕[G, lab] = {a ∈ A(G) : lab(a) = ⊕}
lab	[G, lab] = {a ∈ A(G) : lab(a) = 	}

Definition 5.6. Given n ∈ N and two sets of arcs A−, A+ ⊆ [n]× [n], such that A− ∩A+ = ∅, we
define (G, lab) the labeled digraph induced by [n], A− and A+, denoted by G[A−, A+], as follows:

• V (G) = [n]

• A(G) = A− ∪ A+

• ∀a ∈ A(G), lab(a) =

{
	 if a ∈ A−

⊕ if a ∈ A+
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Definition 5.7. Let f : Bn → Bn be a disjunctive Boolean network and A− ⊆ A	(f), we define
the operator Glab(f, A−) as the output of the Algorithm 5.1, where:

(A+)∗ = {(u, v) : there exists a path from u to v in G[A+]}.

Algorithm 5.1: Glab(f, A−)

Input: A disjunctive Boolean network f : Bn → Bn and a subset A− ⊆ A	(f) of G = G(f)
such that G[A−] is acyclic.

Output: A labeled digraph G[A−, A+].
1 A+ ← {(u, v) ∈ A(f) : ∀w ∈ N+

f (u), (w, v) /∈ A−)};
2 if (A+)∗ ∩ A− = ∅ then return G[A−, A+];
3 else return Glab(f, A− \ (A+)∗);

Note that the result of the Glab(f, A−) operator is a labeled digraph for which its parallel
digraph, if update, is equal to G(f). To prove its correctness, we can classify the arcs of G(f) into
two classes:

• Directly explained arcs: Those that are in the digraph G(h) and have positive label.

• Indirectly explained arcs: Those arcs (u, v) that need an arc (u,w) ∈ A(f) and (w, v) ∈ A(h)
with negative label.

Clearly, an indirectly explained arc (u, v) needs that arc (u,w) is directly or indirectly explained.
In the case of Algorithm 5.1, for each of the arcs (u, v) ∈ A(f), we have two options:

• either there exists w such that (u,w) is in A(f) and (w, v) is in A−, so (u, v) is not added to
A+, and clearly (u, v) is an indirectly explained arc, or else

• there is no such w, therefore (u, v) is added to A+ and thus directly explained.

In this way, to be sure that all the arcs of A(f) can be explained, it is strictly necessary that
at least one of the arcs of A(f) is directly explained.

This can be guaranteed from the following proposition:

Proposition 5.7. Let h, f : Bn → Bn be two disjunctive Boolean networks. If for all arc (u, v) ∈
A(f), (u, v) is a indirectly explained arc then the set of negative arcs in h has at least one cycle.

Proof. Let (u, v0) be an arc indirectly explained, then there exists a vertex v1 such that (u, v1) ∈
A(f) and (v1, v0) ∈ A(h) with negative label. And so on, we can construct a succession of vertices
v0, v1, . . . , vn that fulfill this condition.

Without loss of generality, let us consider vn, . . . , v0 the longest path of negative arcs in A(h)
that satisfy this condition (Figure 5.8).

And for the case of (u, vn), it is necessary that it can be explained indirectly (initial premise),
but there does not exist a vertex vn+1 such that (u, vn+1) ∈ A(f) and (vn+1, vn) ∈ A(h) with
negative label (since, in that case, vn, . . . , v0 would not be the longest path). Therefore, that value
j such that (u, vj) ∈ A(f) and (vj, vn) ∈ A(h) with negative label, must necessarily be in the set
{0, . . . , n− 1}, thus forming a cycle in the set of negative arcs in G(h). 2
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G(h) G(f)

u

v0 v1 . . . vn−1 vn

u

v0 v1 . . . vn−1 vn	 	 	 	

Figure 5.8: Explanation of Proposition 5.7.

In addition to each arc of f being explained (directly or indirectly) another interesting condition
is that the resulting labeled graph is update. Condition (A+)∗ ∩A− = ∅ eliminates several simple
cases, but it is not sufficient as can be seen in Figure 5.9. To find an update solution, based on
this one, it is necessary to study some properties previously.

An interesting set to study is the set of positive arcs generated by Glab, i.e. lab⊕[Glab(f, A−)].
An important characteristic of this set is that for all disjunctive Boolean network h and update
schedule s such that hs = f , we have lab⊕[Glab(f, A−)] ⊆ A(h).
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Figure 5.9: (a) A disjunctive Boolean network f . (b) A	(f). (c) Iterations of Glab(f,A	(f)).
(d) Glab(f,A	(f)) which is not update, because according to the labeled digraph there should be an
update schedule s such that s(2) < s(1) < s(3) ≤ s(2), which is a contradiction.

The following result shows that given two sets of negative arcs (subsets of A	(f)), the positive
arcs of Glab on the larger set are also positive arcs of Glab on the smaller set.

Proposition 5.8. Let f : Bn → Bn be a disjunctive Boolean network and A′′ ⊆ A′ ⊆ A	(f), then
lab⊕[Glab(f, A′)] ⊆ lab⊕[Glab(f, A′′)].

Proof. Let us suppose that A′′ ⊆ A′ ⊆ A	(f).
Let (u, v) ∈ lab⊕[Glab(f, A′)], then ∀w ∈ N+

f (u), (w, v) /∈ A′.
Since A′′ ⊆ A′, then ∀w ∈ N+

f (u), (w, v) /∈ A′′, and therefore, (u, v) ∈ lab⊕[G(f), A′′]. Hence,

lab⊕[G(f), A′] ⊆ lab⊕[G(f), A′′]. 2
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The following result allows us to ensure that if there exists an acyclic set of negative arcs
A− ⊆ A	(f) such that Glab(f, A−) is an update digraph, then GP (Glab(f, A−)) = G(f).

Proposition 5.9. Let f : Bn → Bn be a disjunctive Boolean network and A− ⊆ A	(f) such that
G[A−] is acyclic. If Glab(f, A−) is an update digraph, then GP (Glab(f, A−)) = G(f).

Proof. [GP (Glab(f, A−)) ⊆ G(f)] Let (u, v) ∈ A(GP (Glab(f, A−))). We have two cases:

• If (u, v) ∈ lab⊕[Glab(f, A−)], then (u, v) ∈ A(f).

• Otherwise, if (u, v) /∈ lab⊕[Glab(f, A−)], since (u, v) ∈ A(GP (Glab(f, A−))), then, by definition
of parallel digraph, there exists a vertex w such that (u,w) ∈ A(f) and (w, v) ∈ A−. Since
(w, v) ∈ A−, then N−f (w) ⊆ N−f (v). For this reason, since (u,w) ∈ A(f), then (u, v) ∈ A(f).

[G(f) ⊆ GP (Glab(f, A−))] Let (u, v) ∈ A(f). We have two cases:

• If it does not exist w ∈ [n] such that (u,w) ∈ A(f) and (w, v) ∈ A−, then (u, v) ∈
lab⊕[Glab(f, A−)], therefore, (u, v) ∈ A(GP (Glab(f, A−))).

• If there exists w ∈ [n] such that (u,w) ∈ A(f) and (w, v) ∈ A−, then, by definition of parallel
digraph, (u, v) ∈ A(GP (Glab(f, A−))).

Hence, if (u, v) ∈ A(f), then (u, v) ∈ A(GP (Glab(f, A−))). Therefore, since GP (Glab(f, A−)) ⊆ G(f)
and G(f) ⊆ GP (Glab(f, A−)), we have GP (Glab(f, A−)) = G(f). 2

Remark 5.4. Note that if G[A−] has a cycle, it is not possible to calculate Glab(f, A−). Also, it is
not necessary, because by Corollary 5.6 we have a solution for the studied problem.

The following proposition shows that if there is a solution (with negative arcs A− and positive
arcs B), then the set of negative arcs of Glab(f, A−) is exactly A− and the set of positive arcs of
Glab(f, A−) is a subset of B. Therefore, the solution obtained using Glab(f, A−) is minimal in the
number of arcs.

Proposition 5.10. Let f : Bn → Bn be a disjunctive Boolean network and A− ⊆ A	(f) such that
G[A−] is acyclic. If there exists B ⊆ [n]× [n] such that A−∩B = ∅, G[A−, B] is an update digraph
and GP (G[A−, B]) = G(f), then lab	[(Glab(f, A−)] = A− and lab⊕[Glab(f, A−)] ⊆ B.

Proof. Let us suppose that there exists B ⊆ [n]× [n] such that A−∩B = ∅ and GP (G[A−, B]) =
G(f).

If the Glab(f, A−) operator is applied, note that (A+)∗ ∩ A− = ∅, since if there is an arc (or a
path) in A+ that coincides with an arc in A−, then there is no solution with A− as negative arcs
(because it breaks the update condition, since s(u) ≥ s(w0) ≥ · · · ≥ s(wn) ≥ s(v) (according to
the positive path), and s(u) < s(v) (according to the negative arc), which is a contradiction). For
this reason, the Glab operator does not make a new recursive call, hence lab	[(Glab(f, A−)] = A−.
On the other hand, lab⊕[Glab(f, A−)] is not necessarily equal to B, because B, being part of an
update solution, may contain arcs that Glab omitted (because they are indirectly explained) and
that do not affect the rest of the digraph (as can be seen in Figure 5.10).

For this reason, we can state that lab⊕[Glab(f, A−)] is a minimal set for the positive arcs of
Glab(f, A−) and this together with A− is a minimal set for the arcs of Glab(f, A−). 2
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Figure 5.10: Example of lab⊕[Glab(f,A−)] ⊆ B.

Definition 5.8. Let (G, lab) be a labeled digraph. A partition {V1, V2} of [n] is said to be
admissible if satisfies the following conditions:

1. ∃(u, v) ∈ A(G), u ∈ V1 ∧ v ∈ V2,

2. ∀(u, v) ∈ A(G), u ∈ V1 ∧ v ∈ V2 ⇒ lab(u, v) = 	,

3. ∀(u, v) ∈ A(G), u, v ∈ V2 ⇒ lab(u, v) = ⊕.

Lemma 5.11. Let f : Bn → Bn be a disjunctive Boolean network and {V1, V2} an admissible
partition of Glab(f, A	(f)). If we define A− = {(u, v) ∈ A(G) : u ∈ V1 ∧ v ∈ V2}, where G is the
digraph of the resulting labeled digraph, then Glab(f, A−) is an update digraph and GP (Glab(f, A−)) =
G(f).

Proof. We denoted by (G, lab) the labeled digraph obtained by Glab operator.
To show that (G, lab) is an update digraph, we prove that if we define s = V1, V2, then lab =

labs.
Note that for all (u, v) in A(G) such that u /∈ V1 or v /∈ V2, lab(u, v) = labs(u, v) = ⊕, because

all these arcs, if they appear in G (resulting from the Glab operator), have a label ⊕ since they are
not in A−.

On the other hand, we prove that lab	[G, lab] = A−. Note that when choosing the arcs in A−

only the arcs from V1 to V1 and from V2 to V1 have been removed from lab	[G, lab] (those from V1

to V2 remain in A− and there are no negative arcs from V2 to V2, since V1 and V2 is an admissible
partition). For this reason, for every new arc (u, v) in A+, v ∈ V1. Therefore, in the first iteration
of the Glab operator, no edge is removed from A−, hence lab	[G, lab] = A−.

Thus, since the only negative arcs are from V1 to V2, we have lab = labs, with s = V1, V2, so
(G, lab) is update.

Finally, since Glab(f, A	(f)) is update, according to Proposition 5.9, GP (Glab(f, A	(f))) =
G(f). 2

Theorem 5.12. Let f : Bn → Bn be a disjunctive Boolean network. There exists a solution for
D-DEN problem if and only if A	(f) has a cycle or lab	[Glab(f, A	(f))] 6= ∅. Besides, if a solution
exists, it can be found in polynomial time.
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Proof. If A	(f) has a cycle, we have at least 2 vertices with the same input neighborhood. With
those vertices with equal neighborhood we have the conditions of Corollary 5.6 and therefore there
is a solution to the D-DEN problem.

On the contrary, if A	(f) is acyclic, the first step is to compute Glab(f, A	(f)).
Next, we use the following algorithm to define the set V2, where ComponentDigraph(G) is a

digraph (V̂ , Â) defined as follows:

• V̂ = {G1, G2, . . . , Gk}, where Gi are the strongly connected components of G.

• (Gi, Gj) ∈ Â if and only if there exists an arc from a vertex in Gi to a vertex in Gj.

Algorithm 5.2: AdmPartition(G, lab)

Input: A labeled digraph (G, lab).
Output: A partition {V1, V2} of V (G).

1 G⊕ ← lab⊕[(G, lab)];

2 (V̂ , Â)← CD(G⊕);

3 Q← {Gi ∈ V̂ : @Gj ∈ V̂ , (Gj, Gi) ∈ Â}; // source components

4 v∗ ← Null;
5 while v∗ = Null do
6 Gq ← first element of Q;
7 if ∃u ∈ Gq ∧ ∃(w, u) ∈ A(G), lab(w, u) = 	 then v∗ ← u;

8 else Q← Q ∪ {Gi ∈ V̂ : (Gq, Gi) ∈ Â};
9 end

10 V2 ← {v ∈ V (G): ∃ a path in G⊕ from v to some vertex in the same component of v∗};
11 V1 ← V (G) \ V2;
12 return {V1, V2}

Note that the resulting set V2 is never empty since lab	[Glab(f, A	(f))] 6= ∅.
The strategy presented in this algorithm is to do a Breadth First Search in the digraph for

strongly connected components of the positive arcs of the labeled digraph. The goal of the search
is to find the first strongly connected component that receives a negative arc (which we call the
pivot component). Once this component is found, a partition is created: in V2 are all the vertices
that can reach the pivot component by a path of positive arcs and in V1 the rest of vertices.

Now, we prove that {V1, V2} is an admissible partition.

• Note that in the arc (w, u) (with label 	) that activate the line 7 of Algorithm 5.2, which
triggers the construction of V2, u ∈ V2 (by how the algorithm is defined) and w ∈ V1 (because
if w ∈ V2, (w, u) it would have been removed from A− by applying Glab operator). Therefore,
∃(u, v) ∈ A(G), u ∈ V1 ∧ v ∈ V2,

• By contradiction, let us suppose that there exists an arc (u, v) ∈ V1×V2, such that lab(u, v) =
⊕. Note that since v ∈ V2, there exists k ≥ 1, (v, p) ∈ A(lab⊕[(G, lab)])k where p is a pivot
vertex (found from lines 1 to 7 of Algorithm 5.2) and since u ∈ V1, it does not exist k′ ≥ 1,
(u, p) ∈ A(lab⊕[(G, lab)])k

′
. Since we suppose that (u, v) ∈ A(G) and lab(u, v) = ⊕, then

there exists k′ = k + 1, therefore, u ∈ V2, which is a contradiction. Therefore ∀(u, v) ∈
A(G), u ∈ V1 ∧ v ∈ V2 =⇒ lab(u, v) = 	,
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• By contradiction, let us suppose that there exists an arc (u, v) ∈ V2×V2, such that lab(u, v) =
	. Note that since u, v ∈ V2, there exists k, k′ ≥ 1, (v, p) ∈ A(lab⊕[(G, lab)])k and (u, p) ∈
A(lab⊕[(G, lab)])k

′
where p is a pivot vertex (found from lines 1 to 7 of Algorithm 5.2). If

(u, v) ∈ A(G) and lab(u, v) = 	, then p would not have been chosen as a pivot (since v
appears earlier in the poset), which is a contradiction. Therefore ∀(u, v) ∈ A(G), u, v ∈
V2 =⇒ lab(u, v) = ⊕.

With what we learned above, we can build the following algorithm:

Algorithm 5.3: D-DENPSolve(f)

Input: A disjunctive Boolean network f : Bn → Bn.
Output: (G, lab) an update digraph such that GP (G, lab) = G(f) if there exists a solution

of the D-DEN problem with instance f , or Null otherwise.
1 if A	(f) has a cycle then
2 Let u and v be two vertices such that N−f (u) = N−f (v);

3 return G[{(u, v)}, A(f) \
{

(x, v) : x ∈ N−f (v)
}

]

4 end
5 else
6 (G, lab)← Glab(f, A	(f));
7 if lab	[(G, lab)] = ∅ then return Null;
8 if (G, lab) is update then return (G, lab);
9 {V1, V2} ← AdmPartition(G, lab);

10 A− ← {(u, v) ∈ A(G, lab) : u ∈ V1 ∧ v ∈ V2};
11 return Glab(f, A−);

12 end

Given a disjunctive Boolean network f : Bn → Bn, first we obtain the A	(f), in this way, we
know which arcs, of a possible digraph G, can be labeled 	. If A	(f) has a cycle, by Corollary 5.6,
there is a solution (lines 1 to 3).

Otherwise, if A	(f) is acyclic, the operator Glab can be applied. If the resulting labeled digraph
(G, lab) has no negative arcs, then no neighborhood is contained in another one and, according to
Lemma 5.4, there is no non-trivial solution, therefore the algorithm ends (line 7).

If lab	[(G, lab)] is not empty and (G, lab) is update, then we found a solution (line 8).
Finally, if (G, lab) is not update, since we know that lab	[(G, lab)] 6= ∅, we can find an admis-

sible partition of Glab(f, A	(f)) and with that partition build a solution (lines 9 to 11). 2

Example 5.4. Given f a disjunctive Boolean network (Figure 5.11(a)), the first step is create the
digraph A	(f) (Figure 5.11(b)).

Since A	(f) has no cycles, the algorithm continues. The next step is to get Glab(f, A	(f)).
First, A+ is calculated (Figure 5.11(c)). Then, since no edge (or path) of A+ coincides with the
arcs of A	(f), the operator Glab ends and the result is Figure 5.11(d) and its negative arcs are
Figure 5.11(b). Since lab	[Glab(f, A	(f))] 6= ∅, the algorithm continues.

The labeled digraph of the operator Glab (Figure 5.11(d)) is not update. For this reason, we look
for an admissible partition. First, G⊕ (Figure 5.11(c)) is obtained. Then, the POSET digraph (Fig-
ure 5.11(e)) is generated, where we have three strongly connected components: {1} , {2, 3} , {4, 5}.
We find negative arcs from the component {2, 3} to {1}. With this, we can define V2 = {1} and
V1 = {2, 3, 4, 5}. With this set, we define the labeling in Figure 5.11(f). Finally, the parallel
digraph of the labeling digraph in Figure 5.11(f) is exactly Figure 5.11(a).
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(c) A+ according Algorithm 5.1 (d) Glab(f, A	(f))

{1}

{2, 3} {4, 5}

1
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3 4

5

(e) The POSET digraph (f) Labeled digraph
according Algorithm 5.2 according V1 and V2

Figure 5.11: Figures of Example 5.4.

Theorem 5.13. D-DEN can be decided in polynomial time.

Proof. With what we learned above, we can build the following algorithm:

Algorithm 5.4: D-DENDecider(f)

Input: A disjunctive Boolean network f : Bn → Bn.
Output: True if there exists a solution of the D-DEN problem with instance f , or

False otherwise.
1 if A	(f) has a cycle then return True ;
2 if lab	[Glab(f, A	(f))] 6= ∅ then return True ;
3 return False ;

Note that the simplicity of this algorithm lies in answering two questions:

• Does A	(f) have a cycle?: If the answer is yes, we have at least two vertices with the same
input neighborhood, therefore, according to Corollary 5.6, there is a solution.

• lab	[Glab(f, A	(f))] 6= ∅?: If the answer is yes, according to Theorem 5.12, there is a solution.

If the answer to both questions is no, then there is no solution, because all the candidates to
be negative arcs in some solution have been discarded. 2
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5.6 Conclusions and future work

In this chapter, we present different approaches to the problem of dynamically equivalent networks.
As could be seen, solving the general problem, i.e., given a Boolean network f , finding another

Boolean network f̄ and an update schedule s̄ such that f̄ s̄ = f is NP-Hard, since it is as difficult
as 3-SAT, but it does present an approach to finding a possible solution: if there exists a solution
with an update schedule with more than two blocks, then there exists a solution with an update
schedule of only two blocks.

Now, if we restrict the problem to disjunctive networks, finding a disjunctive Boolean network
h and an update schedule s such that hs = f , this problem can be solved in polynomial time.

It is worth noting that the fact that in the labeled digraph contains an arc (u, v) whose label is
negative only if N−f (u) ⊆ N−f (v) in the parallel digraph is a very important result since it implies
that any digraph whose neighborhoods are not comparable, has no other dynamically equivalent
network different to the trivial one.

With all these results, there remain several ideas to explore, such as finding an algorithm that
can solve the general problem, and explore enumeration algorithms, in the case we fix some element
of the triplet (h, s, f). Another idea would be to analyze if for a Boolean network f , there exists
a Boolean network h and an update schedule s such that s has some particularity (e.g.: s is a
sequential update schedule) and that hs = f .
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Chapter 6

Subproblems of Dynamically Equivalent
Network problem

6.1 Introduction

In the previous chapter, we present an algorithm that, given a disjunctive Boolean network, returns
another Boolean network and another update schedule having the same dynamic behavior. But
what happens if some of the parameters of the expected output are fixed a priori? In this chapter
we analyze two variants that answer this question.

6.2 D-DEN problem with fixed update schedule

In the previous chapter, it was shown that given a disjunctive Boolean network f deciding whether
if there exists a disjunctive Boolean network h and a non-trivial update schedule s such that hs = f
can be solved in polynomial time. The next natural question is: Is there a way to find all the
disjunctive Boolean networks h quickly? This section shows that by fixing one of the parameters
we can answer this question.

6.2.1 Decision problem

Formally, we define the problem as follows:

Dynamically equivalent disjunctive Boolean network with fixed sched-
ule problem

Input: f is a disjunctive Boolean network and s is an update schedule.

Question: Does there exist h a disjunctive Boolean network such that hs = f?

One of the main difficulties in studying the existence of a network h is that given f and s, we
can be in different scenarios:

• There is only one disjunctive Boolean network h, such that hs = f (Figure 6.1).

• There is more than one disjunctive Boolean network h, such that hs = f (Figure 6.2).

• There is no disjunctive Boolean network h, such that hs = f (Figure 6.3).
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G(f)

1 2

(G(h), labs)

1 2

⊕ ⊕

	

Figure 6.1: Given f and s = {1}{2} there is only one BN h such that hs = f .

G(f)

1 2 (G(h2), labs)1 2
	

⊕

(G(h1), labs)1 2

⊕

⊕

G(h3), labs)1 2

⊕

	

⊕

Figure 6.2: Given f and s = {1}{2} there is three BNs h such that hs = f .

G(f)

1 2

Figure 6.3: Given f and s = {1}{2} there is no BN h such that hs = f .

Analyzing the case with multiple preimages, it can be seen that G(h1) ⊆ G(h3) and G(h2) ⊆
G(h3), moreover, G(h3) = G(h1) ∪G(h2). Which leads us to prove Proposition 6.1.

Given g, h : Bn → Bn two disjunctive Boolean networks, we define g ∨ h : Bn → Bn such that
(g∨h)(x) = g(x)∨h(x). It is easy to see that ∀u ∈ [n], N−g∨h(u) = N−g (u)∪N−h (u), and, therefore,
G(g ∨ h) = G(g) ∪G(h).

Proposition 6.1. Let s be an update schedule, and let f , g and h be three disjunctive Boolean
networks such that gs = hs = f , then (g ∨ h)s = f .

To prove this, it is necessary to demonstrate the following lemma:

Lemma 6.2. Let s be an update schedule and f, h : Bn → Bn be two disjunctive Boolean networks.
If G(f) ⊆ G(h), then G(f s) ⊆ G(hs).

Proof. Let us suppose G(f) ⊆ G(h). Now, let (u, v) be any arc in A(f s), by induction on s(v),
we prove that A(f s) ⊆ A(hs).

Basis. If s(v) = 1, since (u, v) ∈ A(f s), then (u, v) ∈ A(f) and s(u) ≥ s(v). Since G(f) ⊆ G(h),
(u, v) ∈ A(h) and s(u) ≥ s(v), therefore (u, v) ∈ A(hs)

Hypothesis of induction. If s(v) < k, (u, v) ∈ A(f s) =⇒ (u, v) ∈ A(hs).
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Inductive step. Let (u, v) ∈ A(f s) be such that s(v) = k, we have two options:

• if (u, v) ∈ A(f) and s(u) ≥ k, then (u, v) ∈ A(h) and s(u) ≥ k, therefore (u, v) ∈ A(hs).

• if there exists w ∈ V such that s(w) < s(v) = k, (u,w) ∈ A(f s) and (w, v) ∈ A(f), then
by hypothesis of induction (u,w) ∈ A(hs), and since G(f) ⊆ G(h), (w, v) ∈ A(h), therefore
(u, v) ∈ A(hs).

2

Proof of Proposition 6.1. [G(f) ⊆ G((g ∨ h)s)] Note that this is a result of Lemma 6.2, since
G(g) ⊆ G(g ∨ h), then G(f) = G(gs) ⊆ G((g ∨ h)s).

[G((g ∨ h)s) ⊆ G(f)] Let (u, v) be any arc in A((g ∨ h)s), by induction on s(v), we prove that
(u, v) ∈ A(f).

Basis. If s(v) = 1, since (u, v) ∈ A((g ∨ h)s), then:

• (u, v) ∈ A(g) and s(u) ≥ s(v), therefore (u, v) ∈ A(gs), or

• (u, v) ∈ A(h) and s(u) ≥ s(v), therefore (u, v) ∈ A(hs).

Therefore, since gs = hs = f , then (u, v) ∈ A(f).

Hypothesis of induction. If s(v) < k, (u, v) ∈ A((g ∨ h)s) =⇒ (u, v) ∈ A(f).

Inductive step. Let (u, v) ∈ A((g ∨ h)s) be such that s(v) = k, we have two options:

• if (u, v) ∈ A(g) (or A(h)) and s(u) ≥ k, then (u, v) ∈ A(gs) (or A(hs)), therefore (u, v) ∈
A(f).

• if there exists w ∈ V such that s(w) < s(v) = k, (u,w) ∈ A((g ∨ h)s) and (w, v) ∈ A(g) (or
A(h)), then by hypothesis of induction (u,w) ∈ A(f), and since (w, v) ∈ A(g) (or A(h)) and
s(w) < s(v), then, by definition of parallel digraph, (u, v) ∈ A(f).

2

Theorem 6.3. Dynamically equivalent disjunctive Boolean network with fixed schedule can be
solved in polynomial time.

Given f : Bn → Bn a disjunctive Boolean network and an update schedule s, Algorithm 6.1
decides, if there exists, a disjunctive Boolean network h such that hs = f . Furthermore, if h exists,
it gives us the maximal disjunctive Boolean Network that satisfies the property.

To prove the correctness of the algorithm, the following lemmas are necessary:

Lemma 6.4. Let f : Bn → Bn be a disjunctive Boolean network, s be an update schedule and h
the Disjunctive Boolean network obtained by Algorithm 6.1. If there exists g such that gs = f , then
G(g) ⊆ G(h).
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Proof. By contradiction, let us suppose that there exists (u, v) ∈ A(g) \ A(h).
If s(u) ≥ s(v): then (u, v) ∈ A(gs), therefore (u, v) ∈ A(f). Also, since (u, v) ∈ A(f) and

s(u) ≥ s(v), according to line 1 of Algorithm 6.1, (u, v) ∈ A+, therefore (u, v) ∈ A(h), which is a
contradiction.

If s(u) < s(v): since (u, v) /∈ A(h), then N−f (u) * N−f (v) (according to line 1 of Algorithm 6.1).
Also, there exists w ∈ [n], such that (w, u) ∈ A(f) and (w, v) /∈ A(f). Since (w, u) ∈ A(f), and
(u, v) ∈ A(g), then, by definition of parallel digraph, (w, v) ∈ A(f), which is a contradiction. 2

Lemma 6.5. Let f : Bn → Bn be a disjunctive Boolean network and s be an update schedule. If
Algorithm 6.1 with inputs f and s returns Null then it does not exist a disjunctive Boolean network
h such that hs = f .

Proof. By contradiction, let us suppose that there exists h a disjunctive Boolean network such
that hs = f and Algorithm 6.1 returns Null.

Since Algorithm 6.1 returns Null, BN ([n], A− ∪ A+)
s 6= f . We have two scenarios:

1. There exists (u, v) ∈ A(h) \ (A− ∪ A+):

• If s(u) ≥ s(v), then (u, v) ∈ A(f), also (according to Algorithm 6.1) (u, v) ∈ A+, which
is a contradiction.

• If s(u) < s(v), then N−f (u) * N−f (v), since it was discarded by line 1 of Algorithm 6.1.

Also, let w be a vertex in N−f (u)\N−f (v) (non-empty), since (w, u) ∈ A(f), (u, v) ∈ A(h)
and s(u) < s(v), then (w, v) ∈ A(f), which is a contradiction.

2. There exists (u, v) ∈ (A− ∪ A+) \ A(h):

• If s(u) ≥ s(v), then (u, v) ∈ A+, therefore, (u, v) ∈ A(f). Since (u, v) ∈ A(f), if
A(g) = A(h) ∪ {(u, v)}, then gs = f , which is a contradiction to BN ([n], A− ∪ A+)

s 6= f

• If s(u) < s(v), then (u, v) ∈ A−, therefore, N−f (u) ⊆ N−f (v). Let A(g) = A(h) ∪
{(u, v)}, if gs has an arc (u′, v′) ∈ A(f), then so does gs. Therefore, if gs = f , then
BN ([n], A− ∪ A+)

s
= f , which is a contradiction (Figure 6.4).

2

G :

v′u′

u v

	⊕

Figure 6.4: Consider that (u′, v′) /∈ A(f), then adding (u, v) with s(u) < s(v), would generate
(u′, v′) ∈ A(f). But if we consider that N−f (u) ⊆ N−f (v), then (u′, v) ∈ A(f), therefore (u′, v′) ∈ A(f),
which is a contradicition
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Algorithm 6.1: MaximumDEDBN(f, s)

Input: A disjunctive Boolean network f and an update schedule s.
Output: The maximum disjunctive Boolean network h such that hs = f or NULL if it does

not exist.
1 A− ← {(u, v) ∈ A	(f) : s(u) < s(v)};
2 if A− = ∅ then return Null;
3 A+ ← {(u, v) ∈ A(f) : s(u) ≥ s(v)};
4 h← BN([n], A− ∪ A+);
5 if hs = f then return h;
6 else return Null;

Proof of Theorem 6.3. Given a disjunctive Boolean network f and an update schedule s, we
have an algorithm that finds the maximum dynamically equivalent disjunctive Boolean network.
The running time, in the worst case, is O(n3), so we can conclude that the problem can be solved
in polynomial time. 2

Example 6.1. Given a disjunctive Boolean network f (Figure 6.5(a)) and the update schedule s =
{3} {1} {2, 4}, the first step is create the sets A− ⊆ A	(f) (Figure 6.5(b)) and A+ (Figure 6.5(c)).

Finally, we check that hs = f . Since all the arcs in f have been justified, the maximum
preimage is the union of the arcs in A+ and A−.

(a) = G(f)

1

{1, 4}
2

{1, 4}

3

{2}
4

{2, 4}
(b) = A−

1 2

34

	

	

(c) = A+

1 2

34

⊕

⊕

⊕
⊕

⊕
⊕

⊕

(d) = (G(h), labs)

1 2

34

⊕

⊕

⊕
⊕

⊕
⊕

⊕

	

	

Figure 6.5: A successful maximum preimage search with s = {3}{1}{2, 4}.

Example 6.2. Given the disjunctive Boolean network f (Figure 6.6(a)) and the update schedule
s = {1} {2}, the first step is create the set A− ⊆ A	(f) (Figure 6.6(b)). Then, A+ (Figure 6.6(c))
is generated.

Finally, since hs = h 6= f , there is no way to generate the arc (1, 2) with the schedule {1} {2}.

(a) G(f)

1

{2}
2

{1}

(b) A−

1 2

(c) A+ = A(h) = A(hs)

1 2
⊕

Figure 6.6: A failed maximum preimage search with s = {1}{2} ((1, 2) cannot be created).
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6.2.2 Enumeration of solutions with fixed schedule

As seen above, deciding the D-DEN problem with a fixed schedule can be solved in polynomial
time, but Algorithm 6.1 returns the maximum dynamically equivalent disjunctive Boolean network
with a fixed schedule, but what happens if we want to know all of them?

As seen in Figure 6.2, there are cases of f and s that have more than one solution and Algo-
rithm 6.1 gives us the maximum solution in the number of arcs, if it exists, but how can we find
the rest of the solutions?

To solve this new question, we define the following problem:

Enumeration of dynamically equivalent disjunctive Boolean networks
with fixed update schedule

Input: f is a disjunctive Boolean network and s is an update schedule.

Question: Is it possible to find the complete set of disjunctive Boolean networks h
such that hs = f?

To develop an algorithm that allows us to solve this problem, the following result is analyzed:

Lemma 6.6. Let s be an update schedule and let h and h′′ two disjunctive Boolean networks such
that G(h′′) ⊆ G(h) and hs = h′′s = f . Then, for all h′ such that G(h′′) ⊆ G(h′) ⊆ G(h), h′s = f .

Proof. Since G(h′′) ⊆ G(h′) ⊆ G(h), by Lemma 6.2:

A(h′′s) ⊆ A(h′s) ⊆ A(hs) = A(f) ⊆ A(h′s) ⊆ A(f).

For this reason, h′s = f . 2

Given a disjunctive Boolean network f and an update schedule s. We define an algorithm that
lists all the existing dynamically equivalent Boolean network with a fixed update schedule.

Algorithm 6.2: enumerationDEDBN(f, s)

Input: A disjunctive Boolean network f and an update schedule s.
Output: A list with all the preimages of f and s.

1 h′′ ← maximumDEDBN(f, s);
2 S ← {h′′};
3 Q← {h′′};
4 while Q 6= ∅ do
5 Let h be an element of Q;
6 Q← Q \ {h};
7 for (u, v) ∈ A(h) do
8 A(h′)← A(h) \ {(u, v)};
9 if h′s = f then

10 S ← S ∪ {h′};
11 Q← Q ∪ {h′};
12 end

13 end

14 end
15 return S
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1. Given a disjunctive Boolean network f and
an update schedule s = {1} {2}. If it exists,
the maximum dynamically equivalent Boolean
network (h′′) is obtained according to Algo-
rithm 6.1. Since h′′s = f , h′′ is added to a
solution set S and since any other dynamically
equivalent Boolean network is a sub-network of
h′′, it is added to the revision set Q.

G(f)

1 2

(G(h), labs)

1 2

⊕

	

⊕

2. While Q is not empty, Let h be an element
extracted from Q: For all (u, v) ∈ A(h), is gen-
erated A(h′) = A(h) \ {(u, v)}. If h′s = f , h′ is
added to S and Q. If h′s 6= f , h′ is discarded.

(G(h), s)
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⊕

(G(h)− {2, 1}, labs)
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(G(h)− {1, 2}, labs)
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⊕

3. The process is repeated for the remaining
elements in Q
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⊕

⊕
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⊕

(G(h)− {2, 1}, labs)

71 2

⊕(G(h)− {2, 2}, labs)

71 2
⊕

(G(h)− {(2, 1)}, labs)
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4. When there are no more sub-networks to an-
alyze, the process is finished and the solution is
the set S.

Figure 6.7: Example of enumerationDEDBN Algorithm.

Theorem 6.7. The computational time of enumerationDEDBN is polynomial with respect to the
number of solutions in the set S.

Proof. First, the initial solution, if it exists, can be obtained in polynomial time (according to
Theorem 6.3). Once a solution is obtained, the steps necessary to obtain another solution are: For
each arc of the solution, that is, m times, construct the Boolean network h′ in time O(n2) and
check if h′s (which is obtained in polynomial time) is equal to f . Finally, once the last solution is
obtained, reaching the end of the algorithm takes in the worst case, m2 = O(n4). With all this, we
can affirm that the algorithm is time delay polynomial, that is, the time between the output of any
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solution and the next one is bounded by a polynomial function of the input size, in the worst case. 2

Theorem 6.8. The computational time of enumerationDEDBN, in worst case, is exponential.

Proof. Let f : Bn → Bn be a disjunctive Boolean network such that:

• A(f) = {(i, j) : i < j} ∪ {(i, i) : i ∈ {1, . . . , n− 1}}

(see Figure 6.8) and let s be a sequential update schedule {1} {2} . . . {n}, the number of dynami-

cally equivalent disjunctive Boolean networks is equal to 2(n−1
2 ) = 2O(n2).

Since enumerationDEDBN is time delay polynomial and there exists an example with an ex-
ponential number of solutions, the computational time of enumerationDEDBN, in the worst case,
is exponential. 2
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Figure 6.8: f and the different preimages when s = {1} {2} {3} {4}.

6.3 D-DEN problem with fixed Boolean network

It has already been analyzed how the algorithm behaves when we have the Boolean network f and
an update schedule s. Does the same happen when we have two Boolean networks f and h?

6.3.1 Decision problem

This new problem is formalized as follows:
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Dynamically equivalent disjunctive Boolean networks with fixed Boolean
network problem

Input: h and f be two disjunctive Boolean networks.

Question: Does there exist an update schedule s �G(h) sp such that hs = f?

Definition 6.1. Let f, h : Bn → Bn be two disjunctive Boolean networks, we say that an update
schedule s is a k-valid update schedule if:

∀u ∈ [n], s(u) ≤ k =⇒ N−f (u) = N−hs(u)

In order to build a solution, the strategy would be as follows: as long as the next block to be
built is still valid, incorporate as many vertices as possible. To verify the validity of a block we
use the following procedures:

Given a k-valid schedule, the s-divider procedure generates a (k + 1)-valid schedule based on
the original schedule. This is done by trying to incorporate into the block k + 1 as many vertices
as possible (leaving the remaining vertices in the block k + 2). If any vertex is “misplaced” in
block k + 1 (lines 12 to 14 of Algorithm 6.3), this vertex is removed from that block.

The process of refinement of block k+1 is performed several times until block k+1 is stabilized.
If block k + 1 (set V of Algorithm 6.3) is not empty, then the schedule s′ is a (k + 1)-valid

schedule. If the set V is empty, the procedure returns the original schedule, indicating that it is
not possible to create a (k + 1)-valid schedule.

Algorithm 6.3: s-divider(f, h, s, k)

Input: Two disjunctive Boolean networks f, h : Bn → Bn and s a k-valid update schedule
with k + 1 blocks.

Output: s′ a (k + 1)-valid update schedule if it exists, or s otherwise.
1 A−(h, f)← A(h) \ A(f);
2 A+(h, f)← (A(h) ∩ A(f) \ A	(f);
3 s′ ← s;
4 V ← ∅;
5 forall the v ∈ [n], s(v) = k + 1 do
6 B ← {u ∈ N−f (w) : w ∈ N−h (v) ∧ s(w) ≤ k};
7 F ← {u ∈ N−h (v) : s(u) > k};
8 if N−f (v) = B ∪ F then V ← V ∪ {v};
9 end

10 repeat
11 for v /∈ V ∧ s(v) = k + 1 do s′(v)← k + 2;
12 V 	 ← {v ∈ V : ∃(u, v) ∈ A−(h, f), s′(u) ≥ s′(v)};
13 V ⊕ ← {v ∈ V : ∃(v, u) ∈ A+(h, f), s′(v) < s′(u)};
14 V p ← {v ∈ V : ∃(v, u) ∈ A(f), (v, u) /∈ potential(f, h, s′, k + 1)};
15 V ← V \ (V 	 ∪ V ⊕ ∪ V p);

16 until (V 	 ∪ V ⊕ ∪ V p) = ∅;
17 if V 6= ∅ then return s′;
18 return s;

The potential procedure (Algorithm 6.4) analyzes, given a k-valid update schedule, all possible
arcs that would potentially create some extension of that update schedule.

77



Thus, line 14 of Algorithm 6.3 verifies that all arcs of A(f) can be created. If any arc of A(f)
does not appear in the potential arcs set, the block k + 1 that is being analyzed in Algorithm 6.3
must be modified.

Algorithm 6.4: potential(f, h, s, k)

Input: Two disjunctive Boolean networks f, h : Bn → Bn, an update schedule s.
Output: A set of arcs that can be generated by an extension of an schedule that contains

the first k blocks of s.
// A receives positive and potentially positive arcs

1 A← {(u, v) ∈ A(h) ∩ A(f) : s(u) ≥ s(v)};
// A− receives negative and potentially negative arcs

2 A− ← {(u, v) ∈ A(h) : s(u) < s(v)} ∪ {(u, v) ∈ A(h) ∩ A	(f) : s(u) = s(v) = k + 1};
3 repeat

// Arcs in A′ could be created and appear in hs

4 A′ ← {(u, v) /∈ A : ∃w ∈ [n], (w, v) ∈ A− ∧ (u,w) ∈ A};
5 A← A ∪ A′;
6 until A′ = ∅;
7 return A;

Finally, all these procedures are summarized in Algorithm 6.5. The idea in this algorithm is to
find an update schedule s such that hs = f . In fact, this algorithm tries to maximize the number
of vertices in the first blocks.

Algorithm 6.5: s(h, f)

Input: Two disjunctive Boolean networks f, h : Bn → Bn.
Output: If there exists an update schedule s such that hs = f , it returns s. Otherwise,

returns Null .
1 s← sp;
2 k ← 0;
3 while hs 6= f do
4 s′ ← s-divider(f, h, s, k);
5 if s′ = s then return Null;
6 k ← k + 1;
7 s← s′;

8 end
9 return s;

The first step is to assume that the parallel schedule is solution for our problem (i.e., hs = f).
If it is not, we proceed to divide the schedule into a 2-block schedule (among all possible 2-block
schedules, s-divider gives us the 1-valid schedule with the most vertices in the first block).

If this new 2-block schedule is not a solution to the problem, the algorithm calls s-divider again
in order to split the second block into two new blocks.

This happens successively until two possible scenarios are reached:
Scenario 1: A schedule obtained by s-divider is a solution to the problem.
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Scenario 2: The s-divider procedure is not able to split a k-valid schedule (which is not a
solution) into some (k+ 1)-valid schedule, and therefore it is not possible to find any schedule not
equivalent to the parallel one that is a solution.

First, let us note that if the algorithm s(f, h) produces an update schedule, it is a solution to
the stated problem. We can see that at each entry to the ‘while’ loop, the algorithm processes
a k-valid update schedule. Starting with the parallel schedule, which is 0-valid. At the end of
each stage of the loop, what we obtain is a (k + 1)-valid update schedule, if it exists. Otherwise,
the algorithm terminates and returns NULL. To construct the (k + 1)-valid update schedule, we
use the s-divider algorithm, which takes both Boolean networks and a k-valid update schedule as
input, and returns a (k + 1)-valid update schedule if it exists. If it does not exist, it returns the
same input update schedule. Note that s-divider returns an update schedule with the minimum
possible number of blocks because it places all possible vertices in the new block, ensuring that
the update schedule is (k + 1)-valid and allows, if necessary, the construction of a (k + 2)-valid
update schedule.

Now we must observe that if a solution exists, the algorithm always delivers a solution different
from NULL. Remember that an update schedule has an associated arc labeling. Thus, when we
have a k-valid update schedule, what we do is fix the labels of the arcs entering and exiting vertices
with update function less than or equal to k. This way, the only arcs that can still be labeled
differently are the arcs whose starting and ending vertices have an update function greater than k.

When entering s-divider the first thing done is to determine a set V of candidate vertices
that could have an update function of k + 1 in a (k + 1)-valid update schedule. To do this, we
ensure that the input neighborhood of the vertex in network f can be constructed from the input
neighborhoods of network h and the proposed update schedule. Then, we begin removing vertices
from this set according to three criteria.

The first criterion is that in the proposed update schedule, a positively labeled arc is generated,
which we know must be positive according to A−(f, h). The second criterion is that with the
proposed labeling, a negatively labeled arc is generated, which we know must be positive according
to A+(f, h). Lastly, the criterion is that the update schedule prevents the creation of an arc in
network f .

Note that removing vertices from the set V based on these three criteria does not affect the fact
that the neighborhoods of the remaining vertices can still be constructed. This is because when
moving a vertex to block k + 2, the relationship between the update functions of both vertices
remains intact.

In this way, when setting the update function of a vertex v in s-divider to k+1, if (u, v) ∈ A(h)
and s(u) = k + 2 we set lab(u, v) = ⊕. By fixing this positive arc, the only arcs we prevent from
being created are those of the form (u, v). However, since we are certain that these arcs were
created since v is in V , this does not hinder the generation of any other arc.

On the other hand, if (v, u) ∈ A(h) and s(u) = k + 2 we set lab(v, u) = 	. In this case, the
only arc that may not be created is (v, u). However, the set V p prevents this from happening.

As mentioned above, Algorithm 6.5 returns an update schedule with the most vertices in the
first blocks, so in the case of h = f , the answer is a block with all vertices, i.e., the parallel schedule
sp. Such a result is correct, but since what we are looking for is a schedule not equivalent to sp, we
study the following general result that allows to create a strategy slightly different when h = f .

Proposition 6.9. Let f : Bn → Bn be a Boolean network. If there exists s an update schedule
with k > 2 blocks such that f s = f , then there exists an update schedule s′ with two blocks such
that f s

′
= f .
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To prove the previous proposition, we use the following lemma:

Lemma 6.10. Let f : Bn → Bn be a Boolean network. If there exists s an update schedule with
k > 1 blocks such that f s = f , then there exist at least k − 1 update schedules with k − 1 blocks
that are also solutions.

Proof. Let h = f be two Boolean networks and let s be an update schedule with k blocks such
that hs = f . If we define the update schedule s′ as follows:

∀u ∈ [n], s′(u) =

{
s(u) if s(u) ≤ j

s(u)− 1 if s(u) > j

for some j ∈ {1, . . . , k}, the following occurs:

• ∀(u, v) ∈ A(h) such that s(u) = j and s(v) = j + 1: labs(u, v) = 	 and labs′(u, v) = ⊕. The
problem is that if there is an arc (w, v) ∈ A(hs) that was formed because labs(u, v) = 	. Let
us show that (w, v) ∈ A(hs

′
). Let w be any element in N−f (u) ∩N−f (v):

– If s(w) > (j + 1), then the arc (w, v) which was originally formed by (w, u) and (u, v)
(s(w) > j + 1 and j < j + 1), is now formed directly by (w, v) (Since N−f (u) ⊆ N−f (v)
and s′(w) ≥ j + 1).

– If s(w) = j + 1, since N−f (u) ⊆ N−f (v) the arc in G(hs) was already being formed by
the arc (w, v) with both vertices in the same block.

– If s(w) = j, then the arc (w, v) which was originally formed by (w, u) and (u, v) (j = j
and j < j + 1), is now formed directly by (w, v) (Since N−f (u) ⊆ N−f (v) and j ≥ j + 1).

– If s(w) < j, then the arc (w, v) was originally formed by (w, u) ∈ A(hs) and (u, v). Since
(w, u) ∈ A(hs), then there exists w′ such that labs(w,w

′) = ⊕ and labs(w
′, u) = 	.

Finally, since s(w′) < s(u) and N−f (u) ⊆ N−f (v), then (w′, v) is in A(f) and therefore

(w, v) ∈ A(hs
′
).

• For all other arcs it is satisfied that labs(u, v) = labs′(u, v), therefore, they are also in A(hs
′
).

Since, this procedure can be applied to any pair of contiguous blocks, we have k − 1 update
schedules with k − 1 blocks that are solutions. 2

Proof of Proposition 6.9. Inductively, based on the fact that h = f , we can keep repeating
this process until we get an update schedule with 2 blocks. 2

With this result, Algorithm 6.6 looks for a 2-block update schedule and give a non-equivalent
solution to sp, if it exists.

6.4 Conclusions and future work

The results detailed in this chapter provide us with valuable insight by evidencing that, despite the
inherent complexity of the general case, as demonstrated in the preceding chapter, its resolution in
polynomial time is not affected by fixing one of its elements. Contrary to what might be expected,
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Algorithm 6.6: s=(f)

Input: A disjunctive Boolean network f : Bn → Bn.
Output: If there exists an update schedule s (non-equivalent to sp) such that f s = f , it

returns s. Otherwise, returns Null .
1 if A(f) ∩ A	(f) = ∅ then return Null;
2 V − ← {v ∈ [n] : ∃(u, v) ∈ A(f), (u, v) ∈ A	(f)};
3 A+(f, f)← A(f) \ A	(f);
4 for w ∈ V − do
5 s← sp;
6 V ← [n] \ {w};
7 repeat
8 for v /∈ V do s(v)← 2;
9 V ⊕ ← {v ∈ V : ∃(v, u) ∈ A+(f, f), s(v) < s(u)};

10 V p ← {v ∈ V : ∃(v, u) ∈ A(f), (v, u) /∈ A(f s)};
11 V ← V \ (V ⊕ ∪ V p);

12 until (V ⊕ ∪ V p) = ∅;
13 if V 6= ∅ ∧ (∃(u, v) ∈ A(f), u ∈ V ∧ v /∈ V ) then return s;

14 end
15 return Null;

fixing one element not only does not complicate the resolution process, but, remarkably, provides
us with solutions that are more intuitive and more accessible to understand. This discovery not
only highlights the robustness of the methodology employed, but also opens up new perspectives
for tackling related problems.

Additionally, the finding of a monotonicity in the solutions, at least when the update schedule
is fixed, grants us the ability to explore the entire spectrum of solutions, allowing us to discover
particular situations of relevance. These significant advances stand as the solid foundation on
which we can build a deeper analysis of new problems, as in the following example:

Example 6.3. The double cycle network with n = 4 fulfill the following conditions:

• There does not exist an update schedule s not equivalent to sp such that f s is equivalent to
f .

• But there exists a Boolean network h (different from f) with an update schedule s (not
equivalent to sp) such that hs is equivalent to f (as can be seen in Figure 6.9).

In an additional aspect, the need arises to direct our efforts towards the evaluation of the
existence of a monotonicity in the specific case of a fixed Boolean network h. This approach
instigates us to investigate whether the presence of this monotonicity can provide a framework
that allows us to systematically explore the vast universe of solutions in this particular context.
This approach projects a crucial next step in our research, promising to broaden our understanding
and contribute to the advancement of complex problem solving in this specific domain.
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Figure 6.9: (a) The double cycle network with n = 4. (b) A network dynamically equivalent to f with
s = {1, 3, 4} {2}.
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Chapter 7

Conclusions

7.1 English version

In this thesis we have addressed different issues that allow us to satisfy the goal of studying how
interaction graphs change when evaluated with different update schedules.

For example, in Chapter 3 various results are presented, such as that the number of strongly
connected components of an interaction graph are conserved when obtaining its parallel digraph,
independent of the update schedule used to generate it. Furthermore, the transversal number
and the packing number, two transcendental parameters when determining upper bounds on the
number of fixed points in Boolean networks, were shown to not decrease when obtaining the parallel
digraph. Finally, examples of update schedules that maintain the τ of the interaction graph and
the ν in complete interaction graphs are presented. These results are not only useful tools for the
development of this thesis but also show the importance of update schedules since their appropriate
manipulation allows us to control certain properties in parallel digraphs.

In Chapter 4 FixedPoint algorithm is presented. This algorithm allows to find the set of fixed
points of a Boolean network based mainly on the structure of the positive cycles of its regulatory
graph and to a lesser extent on the size of the network. This can be considered an improvement to
the results obtained by [2], since the set of states to test is smaller and, in the case that τ = τ+,
FixedPoint algorithm works the same way.

On the other hand, FixedPoint algorithm works well in Boolean networks with large values (even
unbounded) of in-degree and out-degree as long as the found PFVS is small and the regulatory
functions of the network can be evaluated in polynomial time. This is an advantage over others
algorithms whose performance depends strongly on the in-degree or out-degree of the network.

The efficiency of FixedPoint algorithm depends mainly on the size of the input PFVS. Due to
this, it is important to have a PFVS as close to the minimum as possible. In this sense, although
PFVS algorithm can clearly be improved, it is an algorithm that delivers a response close to
optimal (since it is bounded by the FVS that contains the PFVS) in polynomial time.

In future work it would be important to explore methods to reduce the size of a network that
conserve τ+. Also, since the efficiency of the FixedPoint algorithm depends on the size of a input
PFVS, it is important to study the relationship between τ+ and other parameters of the regulatory
graph of a Boolean network such as: minimum and maximum in-degree, out-degree and degree
distributions.

The contribution of these results to our main objective is that the most efficient way to execute
this algorithm is to update the vertices in a certain special order, which is clearly associated with
a sequential update schedule.
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Later, in Chapter 5, different approaches to the problem of dynamically equivalent networks
are presented.

As could be seen in this thesis, solving the general problem, i.e., given a Boolean network f ,
finding another Boolean network f̄ and an update schedule s̄ such that f̄ s̄ = f is NP-Hard, since
it is as difficult as 3-SAT, but it does present an approach to finding a possible solution: if there
exists a solution with an update schedule with more than two blocks, then there exists a solution
with an update schedule of only two blocks.

Now, if we restrict the problem to disjunctive networks, finding a disjunctive Boolean network
h and an update schedule s such that hs = f , this problem can be solved in polynomial time.

It is worth noting that detecting that in the labeled digraph there exists an arc (u, v) whose label
is negative if and only if N−f (u) ⊆ N−f (v) in the parallel digraph, is a very important result since
it implies that any digraph whose neighborhoods are not comparable, has no other dynamically
equivalent network different to the trivial one.

With all these results, there remain several ideas to explore, such as finding an algorithm that
can solve the general problem, and explore enumeration algorithms, in the case we fix some element
of the triplet (h, s, f). Another idea would be to analyze if for a Boolean network f , there exists
a Boolean network h and an update schedule s such that s has some particularity (e.g.: s is a
sequential update schedule) and that hs = f .

The interesting thing about this chapter is that we can no longer only find an update schedule
that fulfills a certain property in the parallel digraph, as we saw in the previous chapters, but we
can now build the update schedule that generated the parallel digraph, which opens doors to new
research, combined with other areas related to Boolean networks.

Finally, in Chapter 6 the problem of dynamic equivalence between Boolean networks is further
explored.

For example, to know if there exists a dynamically equivalent network h to a f and an update
schedule s can be decided in polynomial time, moreover the result of the presented algorithm does
not give the maximal dynamically equivalent network in the set of arcs, so that such a network we
can explore the whole set of possible solutions to the problem with a polynomial delay. With these
results, equivalence classes could be defined according to the dynamically equivalent networks.

Moreover, for the case when given h and f one wants to find the update schedule s such that
hs = f , it was also shown that it can be decided in polynomial time. Moreover, if h = f an
alternative algorithm is also presented that allows to verify if there exist a 2-block update schedule
such that hs = f . All these results combined with the results of the previous chapters, allow us to
face new challenges, such as combining these results with other families of Boolean networks, or
other models, such as cellular automata, in order to build new knowledge.

All these results are interesting new tools that, combined in the right way, would allow to
explore a number of topics in the field of Boolean networks that have yet to be explored.

7.2 Versión en español

En esta tesis hemos abordado diferentes cuestiones que nos permiten satisfacer el objetivo de
estudiar cómo cambian los grafos de interacción cuando se evalúan con diferentes esquemas de
actualización.

Por ejemplo, en el Caṕıtulo 3 se presentan diversos resultados, como que el número de compo-
nentes fuertemente conexas de un grafo de interacción se conserva al obtener su digrafo paralelo,
independientemente del esquema de actualización utilizado para generarlo. Además, se demues-
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tra que el número transversal y el número de empaquetamiento, dos parámetros trascendentales
a la hora de determinar las cotas superiores del número de puntos fijos en redes Booleanas, no
disminuyen al obtener el digrafo paralelo. Por último, se presentan ejemplos de esquemas de ac-
tualización que mantienen el τ del grafo de interacción y el ν en grafos de interacción completos.
Estos resultados no sólo son herramientas útiles para el desarrollo de esta tesis sino que muestran
la importancia de los esquemas de actualización ya que su adecuada manipulación nos permite
controlar ciertas propiedades en los digrafos paralelos.

En el Caṕıtulo 4 se presenta el algoritmo FixedPoint. Este algoritmo permite encontrar el
conjunto de puntos fijos de una red Booleana basándose principalmente en la estructura de los
ciclos positivos de su grafo regulatorio y en menor medida en el tamaño del grafo. Esto puede
considerarse una mejora a los resultados obtenidos por [2], ya que el conjunto de estados a probar
es menor y, en el caso de que τ = τ+, el algoritmo FixedPoint funciona de la misma manera.

Por otro lado, el algoritmo FixedPoint funciona bien en redes Booleanas con valores grandes
(incluso ilimitados) de in-degree y out-degree siempre que el PFVS encontrado sea pequeño y las
funciones reguladoras de la red puedan evaluarse en tiempo polinomial. Esto supone una ventaja
sobre otros algoritmos cuyo rendimiento depende en gran medida del grado de entrada o de salida
de la red.

La eficacia del algoritmo FixedPoint depende principalmente del tamaño del PFVS de entrada.
Debido a esto, es importante tener un PFVS lo más cercano posible al mı́nimo. En este sentido,
aunque el algoritmo PFVS es claramente mejorable, se trata de un algoritmo que proporciona una
respuesta cercana al óptimo (ya que está acotado por el FVS que contiene al PFVS) en tiempo
polinomial.

En futuros trabajos seŕıa importante explorar métodos para reducir el tamaño de una red que
conserven τ+. Además, dado que la eficiencia del algoritmo Fixed Point depende del tamaño de
un PFVS de entrada, es importante estudiar la relación entre τ+ y otros parámetros del grafo
regulador de un grafo Booleano como: mı́nimo y máximo in-degree, out-degree y distribuciones de
grado.

La contribución de estos resultados a nuestro objetivo principal es que la forma más eficiente de
ejecutar este algoritmo es actualizar los vértices en un cierto orden especial, que está claramente
asociado con un esquema de actualización secuencial.

Posteriormente, en el Caṕıtulo 5, se presentan diferentes aproximaciones al problema de las
redes dinámicamente equivalentes.

Como se ha podido ver en esta tesis, resolver el problema general, es decir, dado una red
Booleana f , encontrar otra red Booleana f̄ y un esquema de actualización s̄ tal que f̄ s̄ = f es
NP-Hard, ya que es tan dif́ıcil como 3-SAT, pero presenta una aproximación para encontrar una
posible solución: si existe una solución con un esquema de actualización con más de dos bloques,
entonces existe una solución con un esquema de actualización de sólo dos bloques.

Ahora bien, si restringimos el problema a redes disyuntivas, encontrando una red Booleana
disyuntiva h y un esquema de actualización s tal que hs = f , este problema puede resolverse en
tiempo polinomial.

Cabe destacar que detectar que en el digrafo etiquetado existe un arco (u, v) cuya etiqueta
es negativa si y sólo si N−f (u) ⊆ N−f (v) en el digrafo paralelo, es un resultado muy importante
ya que implica que cualquier digrafo cuyos vecindades no sean comparables, no tiene otro grafo
dinámicamente equivalente diferente al trivial.

Con todos estos resultados, quedan varias ideas por explorar, como encontrar un algoritmo
que pueda resolver el problema general, y explorar algoritmos de enumeración, en el caso de que
fijemos algún elemento de la terna (h, s, f). Otra idea seŕıa analizar si para una red Booleana f ,
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existe una red Booleana h y un esquema de actualización s tal que s tenga alguna particularidad
(por ejemplo: s es un esquema de actualización secuencial) y que hs = f .

Lo interesante de este caṕıtulo es que ya no sólo podemos encontrar un esquema de actual-
ización que cumpla una determinada propiedad en el digrafo paralelo, como vimos en los caṕıtulos
anteriores, sino que ahora podemos construir el esquema de actualización que generó el digrafo
paralelo, lo que abre las puertas a nuevas investigaciones, combinadas con otras áreas relacionadas
con las redes Booleanas.

Por último, en el Caṕıtulo 6 se profundiza en el problema de la equivalencia dinámica entre
redes Booleanas.

Por ejemplo, saber si existe una red h dinámicamente equivalente a una red f y un esquema de
actualización s se puede decidir en tiempo polinomial, además el resultado del algoritmo presentado
nos da la máxima red (en el conjunto de arcos) dinámicamente equivalente, por lo que dicha red
nos permite explorar todo el conjunto de posibles soluciones al problema con un delay polinomial.
Con estos resultados, se podŕıan definir clases de equivalencia según las redes dinámicamente
equivalentes.

Además, para el caso en que dados h y f se quiera encontrar el esquema de actualización s
tal que hs = f , también se ha demostrado que se puede decidir en tiempo polinomial. Además, si
h = f también se presenta un algoritmo alternativo que permite verificar si existe un esquema de
actualización de 2 bloques tal que hs = f . Todos estos resultados combinados con los resultados de
los caṕıtulos anteriores, nos permiten afrontar nuevos retos, como combinar estos resultados con
otras familias de redes Booleanas, u otros modelos, como los autómatas celulares, para construir
nuevo conocimiento.

Todos estos resultados son nuevas e interesantes herramientas que, combinadas de la forma
adecuada, permitiŕıan explorar una serie de temas en el campo de las redes Booleanas que aún
están por explorar.
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